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Preface

This is the fourth English edition of the book Convexity and Optimization in Ba-
nach Spaces. With respect to the previous edition published by Kluwer in 1986, this
book contains new results pertaining to new concepts of subdifferential for convex
functions and new duality results in convex programming. The last chapter of the
book, concerned with convex control problems, was rewritten for this edition and
completed with new results concerning boundary control systems, the dynamic pro-
gramming equations in optimal control theory, periodic optimal control problems.
Also, the bibliographical list and bibliographical comments were updated. The con-
tents, as well as the structure of the book, were modified in order to include a few
fundamental results and progress in the theory of infinite-dimensional convex anal-
ysis which were obtained in the last 25 years.

Viorel Barbu
Teodor Precupanu

Iaşi, Romania

v





Contents

1 Fundamentals of Functional Analysis . . . . . . . . . . . . . . . . . . 1
1.1 Convexity in Topological Linear Spaces . . . . . . . . . . . . . . 1

1.1.1 Classes of Topological Linear Spaces . . . . . . . . . . . . 1
1.1.2 Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Separation of Convex Sets . . . . . . . . . . . . . . . . . . 13
1.1.4 Closedness of the Sum of Two Sets . . . . . . . . . . . . . 20

1.2 Duality in Linear Normed Spaces . . . . . . . . . . . . . . . . . . 23
1.2.1 The Dual Systems of Linear Spaces . . . . . . . . . . . . . 24
1.2.2 Weak Topologies on Linear Normed Spaces . . . . . . . . 26
1.2.3 Reflexive Banach Spaces . . . . . . . . . . . . . . . . . . 31
1.2.4 Duality Mapping . . . . . . . . . . . . . . . . . . . . . . . 34

1.3 Vector-Valued Functions and Distributions . . . . . . . . . . . . . 40
1.3.1 The Bochner Integral . . . . . . . . . . . . . . . . . . . . 41
1.3.2 Bounded Variation Vector Functions . . . . . . . . . . . . 42
1.3.3 Vector Measures and Distributions on Real Intervals . . . . 44
1.3.4 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . 50

1.4 Maximal Monotone Operators and Evolution Systems in Banach
Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.4.1 Definitions and Fundamental Results . . . . . . . . . . . . 52
1.4.2 Linear Evolution Equations in Banach Spaces . . . . . . . 58

1.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2 Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.1 General Properties of Convex Functions . . . . . . . . . . . . . . 67

2.1.1 Definitions and Basic Properties . . . . . . . . . . . . . . . 67
2.1.2 Lower-Semicontinuous Functions . . . . . . . . . . . . . . 69
2.1.3 Lower-Semicontinuous Convex Functions . . . . . . . . . 71
2.1.4 Conjugate Functions . . . . . . . . . . . . . . . . . . . . . 75

2.2 The Subdifferential of a Convex Function . . . . . . . . . . . . . . 82
2.2.1 Definition and Fundamental Results . . . . . . . . . . . . . 82

vii



viii Contents

2.2.2 Further Properties of Subdifferential Mappings . . . . . . . 88
2.2.3 Regularization of the Convex Functions . . . . . . . . . . . 97
2.2.4 Perturbation of Cyclically Monotone Operators

and Subdifferential Calculus . . . . . . . . . . . . . . . . . 100
2.2.5 Variational Inequalities . . . . . . . . . . . . . . . . . . . 107
2.2.6 ε-Subdifferentials of Convex Functions . . . . . . . . . . . 114
2.2.7 Subdifferentiability in the Quasi-convex Case . . . . . . . 121
2.2.8 Generalized Gradients . . . . . . . . . . . . . . . . . . . . 124

2.3 Concave–Convex Functions . . . . . . . . . . . . . . . . . . . . . 126
2.3.1 Saddle Points and Mini-max Equality . . . . . . . . . . . . 126
2.3.2 Saddle Functions . . . . . . . . . . . . . . . . . . . . . . . 127
2.3.3 Mini-max Theorems . . . . . . . . . . . . . . . . . . . . . 136

2.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
2.5 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . 148

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

3 Convex Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.1 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . 153

3.1.1 The Case of a Finite Number of Constraints . . . . . . . . 153
3.1.2 Operatorial Convex Constraints . . . . . . . . . . . . . . . 158
3.1.3 Nonlinear Programming in the Case of Fréchet

Differentiability . . . . . . . . . . . . . . . . . . . . . . . 164
3.2 Duality in Convex Programming . . . . . . . . . . . . . . . . . . 172

3.2.1 Dual Convex Minimization Problems . . . . . . . . . . . . 173
3.2.2 Fenchel Duality Theorem . . . . . . . . . . . . . . . . . . 179
3.2.3 Optimality Through Closedness . . . . . . . . . . . . . . . 184
3.2.4 Non-convex Optimization and the Ekeland Variational

Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
3.2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

3.3 Applications of the Duality Theory . . . . . . . . . . . . . . . . . 203
3.3.1 Linear Programming . . . . . . . . . . . . . . . . . . . . . 204
3.3.2 The Best Approximation Problem . . . . . . . . . . . . . . 208
3.3.3 Additivity Criteria for Subdifferentials of Convex

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
3.3.4 Toland Duality Theorem . . . . . . . . . . . . . . . . . . . 216
3.3.5 The Farthest Point Problem . . . . . . . . . . . . . . . . . 219

3.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
3.5 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . 225

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

4 Convex Control Problems in Banach Spaces . . . . . . . . . . . . . . 233
4.1 Distributed Optimal Control Problems . . . . . . . . . . . . . . . 233

4.1.1 Formulation of the Problem and Basic Assumptions . . . . 233
4.1.2 Existence of Optimal Arcs . . . . . . . . . . . . . . . . . . 239
4.1.3 The Maximum Principle . . . . . . . . . . . . . . . . . . . 242
4.1.4 Proof of Theorem 4.5 . . . . . . . . . . . . . . . . . . . . 245



Contents ix

4.1.5 Proof of Theorem 4.6 . . . . . . . . . . . . . . . . . . . . 258
4.1.6 Further Remarks on Optimality Theorems . . . . . . . . . 261
4.1.7 A Finite-Dimensional Version of Problem (P) . . . . . . . 265
4.1.8 The Dual Control Problem . . . . . . . . . . . . . . . . . . 275
4.1.9 Some Examples . . . . . . . . . . . . . . . . . . . . . . . 280
4.1.10 The Optimal Control Problem in a Duality Pair

V ⊂ H ⊂ V ′ . . . . . . . . . . . . . . . . . . . . . . . . . 287
4.2 Synthesis of Optimal Control . . . . . . . . . . . . . . . . . . . . 296

4.2.1 Optimal Value Function and Existence of Optimal
Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

4.2.2 Hamilton–Jacobi Equations . . . . . . . . . . . . . . . . . 301
4.2.3 The Dual Hamilton–Jacobi Equation . . . . . . . . . . . . 313

4.3 Boundary Optimal Control Problems . . . . . . . . . . . . . . . . 316
4.3.1 Abstract Boundary Control Systems . . . . . . . . . . . . 316
4.3.2 The Boundary Optimal Control Problem . . . . . . . . . . 324
4.3.3 Proof of Theorem 4.41 . . . . . . . . . . . . . . . . . . . . 326

4.4 Optimal Control Problems on Half-Axis . . . . . . . . . . . . . . 329
4.4.1 Formulation of the Problem . . . . . . . . . . . . . . . . . 329
4.4.2 Optimal Feedback Controllers for (P∞) . . . . . . . . . . . 332
4.4.3 The Hamiltonian System on Half-Axis . . . . . . . . . . . 336
4.4.4 The Linear Quadratic Regulator Problem . . . . . . . . . . 342

4.5 Optimal Control of Linear Periodic Resonant Systems . . . . . . . 344
4.5.1 Weak Solutions and the Closed Range Property . . . . . . 345
4.5.2 Existence and the Maximum Principle . . . . . . . . . . . 349
4.5.3 The Optimal Control of the Wave Equation . . . . . . . . . 356

4.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
4.7 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . 361

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365





Acronyms

A∞ The asymptotic cone of the set A

affA The affine hull of the set A

Γ The field of scalars of a linear space (R or C)
hypof The hypograph of the function f

spanA The linear subspace generated by the set A

coneA The cone generated by the set A

kerf The kernel of the function f

A0 The polar of the set A

cA The complement of the set A

pA The Minkowski functional of the set A

C The set of all complex numbers
N The set of all natural numbers
N

∗ The set of all nonzero natural numbers
R The real line (−∞,∞)

R
n The n-dimensional Euclidean space

R
+ = (0,+∞)

R
− = (−∞,0)

R = [−∞,+∞]
R

∗ = ]−∞,+∞]
R

n+ = {(x1, . . . , xn);xn > 0}
Ω An open subset of Rn

∂Ω The boundary of Ω

Q = Ω × (0, T )

Σ = ∂Ω × (0, T ), where 0 < T < ∞
‖ · ‖X The norm of the linear normed space X

X∗ The dual of space X

(·, ·)X The scalar product of the Hilbert space X

x · y The scalar product of the vectors x, y ∈R
n

L(X,Y ) The space of linear continuous operators from X to Y

∇f The gradient of the function f

∂f The subdifferential of the function f

xi



xii Acronyms

f ∗ The conjugate of the function f

B∗ The adjoint of the operator B

C The closure of the set C

intC The interior of the set C

convC The convex hull of the set C

riC The relative interior of the set C

clf The closure of the function f

Dom(f ) The effective domain of the function f

D(A) The domain of the operator A

R(A) The range of the operator A

IC The indicator function of the set C

epif The epigraph of the function f

sign The signum function on X : signx = x/‖x‖X if x 	= 0
sign 0 = {x; ‖x‖ ≤ 1}

Ck(Ω) The space of real-valued functions on Ω that are continuously
differentiable up to order k, 0 ≤ k ≤ ∞

Ck
0(Ω) The subspace of functions in Ck(Ω) with compact support in Ω

D(Ω) The space C∞
0 (Ω)

dku
dtk

, u(k) The derivative of order k of u : [a, b] → X

D ′(Ω) The dual of D(Ω) (i.e., the space of distributions on Ω)
C(Ω) The space of continuous functions on Ω

Lp(Ω) The space of p-summable functions u : Ω → R endowed with the
norm ‖u‖p = (

∫
Ω

|u(x)|p dx)1/p , 1 ≤ p < ∞,
‖u‖∞ = ess supx∈Ω |u(x)| for p = ∞

L
p
m(Ω) The space of p-summable functions u : Ω →R

m

Wm,p(Ω) The Sobolev space
{u∈Lp(Ω); Dαu ∈ Lp(Ω), |α| ≤ m, 1 ≤ p ≤ ∞}

W
m,p

0 (Ω) The closure of C∞
0 (Ω) in the norm of Wm,p(Ω)

W−m,q(Ω) The dual of W
m,p

0 (Ω); 1
p

+ 1
q

= 1, p < ∞, q > 1

Hk(Ω),Hk
0 (Ω) The spaces Wk,2(Ω) and W

k,2
0 (Ω), respectively

Lp(a, b;X) The space of p-summable functions from (a, b) to X (Banach
space) 1 ≤ p ≤ ∞, −∞ ≤ a < b ≤ ∞

AC([a, b];X) The space of absolutely continuous functions from [a, b] to X

BV([a, b];X) The space of functions with bounded variation on [a, b]
BV(Ω) The space of functions with bounded variation on Ω

W1,p([a, b];X) The space {u ∈ AC([a, b];X); du/dt ∈ Lp([a, b];X)}
∂u
∂ν

The normal derivative of the function u

Aac The algebraic closure of the set A

Ai The algebraic interior of the set A

Ari The algebraic relative interior of the set A



Chapter 1
Fundamentals of Functional Analysis

The purpose of this preliminary chapter is to introduce the basic terminology and
results of functional and convex analysis which are used in the sequel.

1.1 Convexity in Topological Linear Spaces

In this section, we concentrate on basic definitions and properties of convex sets in
linear infinite-dimensional spaces.

1.1.1 Classes of Topological Linear Spaces

The general framework for functional analysis is the structure of the topological
linear space, which is a linear space endowed with a topology for which the opera-
tions of addition and scalar multiplication are continuous. In this case, we say that
the topology is compatible with the algebraic structure of the linear space or that the
topology is linear. In the following, we recall some basic properties of topological
linear spaces, most of them being immediate consequences of the definition.

We denote by X a linear space over a field of scalars Γ . (In our discussion, the
field Γ will always be the real field R or the complex field C.)

Theorem 1.1 The mappings x → x + x0 and x → λx , where λ �= 0, λ ∈ Γ , are
homeomorphisms of X onto itself.

In particular, a linear topology can be defined if we know a base of neighborhoods
at the origin because by translation we can obtain a base of neighborhoods for every
other point x ∈ X; each neighborhood of a point x is of the form x + V , where
V is a neighborhood of the origin. Consequently, we easily as a result find that a
linear mapping between two topological linear spaces is continuous if and only if it
is continuous at the origin.

V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces,
Springer Monographs in Mathematics,
DOI 10.1007/978-94-007-2247-7_1, © Springer Science+Business Media B.V. 2012
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2 1 Fundamentals of Functional Analysis

As concerns the continuity of linear functionals, we can prove the following cha-
racterization theorem.

Theorem 1.2 If f is a linear functional on a topological linear space, then the
following statements are equivalent:

(i) f is continuous
(ii) The kernel of f , kerf = {x;f (x) = 0}, is closed

(iii) There is a neighborhood of the origin on which f is bounded.

A linear space of finite-dimension possesses a unique separated linear topology.
Therefore, every separated topological linear space of dimensions n ∈ N is isomor-
phic with Γ n.

Definition 1.3 A mapping p : X → R is called a seminorm on X if it has the fol-
lowing properties:

(i) p(x) = |λ|p(x), for every x ∈ X and λ ∈ Γ

(ii) p(x + y) ≤ p(x) + p(y), for every x, y ∈ X.

From conditions (i) and (ii), as a result we find that

(iii) p(x) ≥ 0, for every x ∈ X.

If p has the stronger property

(iii)′ p(x) > 0, for every x ∈ X \ {0},
then p is called a norm on X.

A particular class of topological linear spaces with richer properties is the class
of locally convex spaces; these are topological linear spaces with the property that
for every element there exists a base of neighborhoods consisting of convex sets. It
is well known that any locally convex topology on a linear space may be generated
by a family of seminorms.

Let P = {pi; i ∈ I } be a family of seminorms on the linear space X. Consider
for every x ∈ X the family of subsets of X

V (x) = {
Vi1,i2,...,ik,ε(x); k ∈ N

∗, i1, . . . , ik ∈ I, ε > 0
}
, x ∈ X, (1.1)

where

Vi1,i2,...,ik,ε(x) = {
u ∈ X; pij (u − x) < ε, ∀j = 1,2, . . . , k

}
. (1.2)

We can easily see that V (x), x ∈ X, is a base of neighborhoods for a locally convex
topology τP on X. The topological properties for τP can be characterized analyti-
cally by means of the seminorms of P .

Theorem 1.4 The locally convex topology τP is the coarsest linear topology on X

for which all seminorms of the family P are continuous.
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We recall that a seminorm p : X → R is continuous for τP if and only if there
are k > 0 and p1,p2, . . . , pn ∈ P such that

p(x) ≤ k max
1≤i≤n

pi(x), ∀x ∈ X. (1.3)

This implies that a linear mapping T : X → Y , where X and Y are locally convex
spaces endowed with the topologies τP and τQ , respectively, is continuous if and
only if for each q ∈ Q there are kq > 0 and p1, . . . , pn ∈ P such that

q(T x) ≤ kq max
1≤i≤n

pi(x), ∀x ∈ X. (1.4)

A sequence {xn} of points from X is τP -convergent to x0 ∈ X if and only if the
numerical sequence

p(x1 − x0),p(x2 − x0), . . . , p(xn − x0), . . . (1.5)

is convergent to zero for every p ∈ P .
A set M ⊂ X is τP -bounded if and only if every seminorm belonging to the

family P is bounded on M , that is, if and only if, for every p ∈ P , there exists a
constant kp > 0 such that p(x) ≤ kp , ∀x ∈ M .

The locally convex topology τP is separated if and only if the family of semi-
norms P possesses the following property:

for every x ∈ X \ {0} there is p ∈ P such that p(x) �= 0. (1.6)

A linear space X endowed with a norm ‖ · ‖ is called a linear normed space.
In particular, we can obtain the topology of a linear normed space if we take P =

{‖ · ‖}. On the other hand, the topology of a linear normed space can be generated
by the distance defined by d(x, y) = ‖x − y‖, ∀x, y ∈ X. In this way, for linear
normed spaces, the metric properties interweave with the topological properties of
a locally convex space. Generally speaking, a locally convex topology is metrizable
(in other words, there exists a distance which generates its topology), if and only if
this topology is separated and can be generated by a countable family of seminorms.
The importance of the metrizability consists of the fact that all the topological pro-
perties can be characterized by sequences.

Let X,Y be linear normed spaces of the same nature. A linear operator
T : X → Y is continuous if and only if it is bounded, that is, T (M) is bounded
for every bounded set M ⊂ X. In other words, there exists K > 0 such that

‖T x‖ ≤ K‖x‖, ∀x ∈ X. (1.7)

The set L(X,Y ) of all linear continuous operators defined on X with values in Y

becomes a linear normed space by

‖T ‖ = sup
{‖T x‖; ‖x‖ ≤ 1

} = inf
{
K; ‖T x‖ ≤ K‖x‖, ∀x ∈ X

}
. (1.8)

If X = Y , we shortly denote L(X) = L(X,X).
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A complete linear normed space is called a Banach space. If Y is a Banach space,
then L(X,Y ) is also a Banach space.

In particular, if Y = Γ , we find that X∗ = L(X,Γ ), called the dual of X, is a
Banach space relative to the norm of the functionals, which by (1.8) becomes

‖x∗‖ = sup
{∣
∣x∗(x)

∣
∣; ‖x‖ ≤ 1

}
. (1.9)

If X is a real linear normed space, then we also have

‖x∗‖ = sup
{
x∗(x); ‖x‖ ≤ 1

}
, (1.9′)

while, if X is a complex linear normed space, we have

‖x∗‖ = sup
{
Re x∗(x); ‖x‖ ≤ 1

}
.

Consequently, the following fundamental inequality holds:

∣
∣x∗(x)

∣
∣ ≤ ‖x∗‖‖x‖, for all x ∈ X, x∗ ∈ X∗. (1.10)

A family A ⊂ L(X,Y ) is called uniformly bounded if it is bounded in the
norm (1.8). Hence, regarding A as a family of functions on X, it is uniformly
bounded on the closed unit ball of X. On the other hand, we say that the family
A ⊂ L(X,Y ) is pointwise bounded if Ax = {T x;T ∈ A } is a bounded set of Y for
every x ∈ X. It is clear that every uniformly bounded family is pointwise bounded;
the converse is not true. But it is well known that for Banach spaces we have the
very useful principle of uniform boundedness.

Theorem 1.5 If X is a Banach space, then every pointwise bounded family of linear
continuous operators from L(X,Y ) is uniformly bounded.

In the special case of sequences of operators, this result leads to the Banach–
Steinhauss Theorem.

Theorem 1.6 (Banach–Steinhauss) Let {An}n∈N be a sequence from L(X,Y )

pointwise convergent to an operator A. If X is a Banach space, then A ∈ L(X,Y )

and

‖A‖ ≤ lim inf
n→∞ ‖An‖.

Definition 1.7 A mapping 〈·, ·〉 : X ×X → Γ is said to be an inner product if it has
the following properties:

(i) 〈x, x〉 ≥ 0, ∀x ∈ X, and 〈x, x〉 = 0 implies x = 0
(ii) 〈x, y〉 = 〈y, x〉, ∀x, y ∈ X

(iii) 〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉, ∀a, b ∈ Γ, ∀x, y ∈ X.
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From condition (i), we find as a result that, for every x1, x2 ∈ X, the Hermitian
form

f (λ1, λ2) = 〈λ1x1 + λ2x2, λ1x1 + λ2x2〉, λ1, λ2 ∈ Γ,

is nonnegative. Conditions (ii) and (iii) give the well-known Cauchy–Schwarz in-
equality,

∣
∣〈x, y〉∣∣2 ≤ 〈x, x〉〈y, y〉, ∀x, y ∈ X. (1.11)

The mapping ‖ · ‖ : X →R, defined by

‖x‖ = 〈x, x〉 1
2 , ∀x ∈ X, (1.12)

is a norm on X. Inequality (1.11) becomes
∣
∣〈x, y〉∣∣ ≤ ‖x‖‖y‖, ∀x, y ∈ X. (1.13)

A linear space endowed with an inner product is called a pre-Hilbert space. A pre-
Hilbert space is also considered as a linear normed space by the norm defined
by (1.12).

Two elements x and y in a pre-Hilbert space are said to be orthogonal if
〈x, y〉 = 0; we denote this by x⊥y. We remark that the orthogonality relation is
linear and symmetric.

We also mention the following consequence of property (i) from Definition 1.7:

if x⊥y, ∀y ∈ X, then x = 0. (1.14)

Proposition 1.8 The elements x, y are orthogonal if and only if

‖x + λy‖ ≥ ‖x‖, ∀λ ∈ Γ.

If a pre-Hilbert space is complete in the norm associated to the given inner pro-
duct, then it is called a Hilbert space.

The general form of the continuous linear functionals is expressed more precisely
by the so-called Riesz Representation Theorem.

Theorem 1.9 (Riesz) If f is a continuous linear functional on the Hilbert space X,
then there exists a unique element a ∈ X such that

f (x) = 〈x, a〉, ∀x ∈ X, (1.15)

‖f ‖ = ‖a‖. (1.16)

On the other hand, using the Cauchy–Schwarz inequality (1.13), we easily ob-
serve that, for every a ∈ X, the linear functional fa : X → Γ defined by

fa(x) = 〈x, a〉, ∀x ∈ X,

is continuous, hence fa ∈ X∗, and at the same time ‖fa‖ = ‖a‖, ∀a ∈ X.
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If we define the mapping J : X → X∗ by

Ja = fa, ∀a ∈ X, (1.17)

then the Riesz representation Theorem 1.9 says that J is an isometric bijection (anti-
linear). With the aid of J , called the canonical isomorphism of the Hilbert space X,
we can convey some properties from X to X∗. In fact, we observe that the natu-
ral norm on X∗, given by relation (1.9), is associated to the inner product on X∗,
defined by

〈f1, f2〉 = 〈
J−1f2, J

−1f1
〉
, ∀f1, f2 ∈ X∗. (1.18)

Therefore, the dual of a Hilbert space is also a Hilbert space.
Let X1,X2 be two Hilbert spaces of the same nature and let T : X1 → X2 be a

linear continuous operator. For every y ∈ X2, the function fy : X1 → Γ defined by

fy(x) = 〈T x,y〉, ∀x ∈ X1, (1.19)

is a continuous linear functional on X1 and so, according to the Riesz Representation
Theorem 1.9, there exists a unique element ȳ ∈ X1 such that

fy(x) = 〈x, ȳ〉, ∀x ∈ X1. (1.20)

If we define the mapping T ∗ : X2 → X1 by T ∗y = ȳ, for every y ∈ X2, it is easy to
see that T ∗ is the unique operator from X2 into X1 which satisfies the relation

〈T x,y〉 = 〈x,T ∗y〉, ∀x ∈ X1, ∀y ∈ X2. (1.21)

This operator T ∗ (which satisfies relation (1.21)) is called the adjoint of the conti-
nuous linear operator T . The adjoint is also a continuous linear operator and we have

‖T ∗‖ = ‖T ‖, ∀T ∈ L(X1,X2). (1.22)

In particular, if X1 = X2 = X and T ∈ L(X), then T ∗ ∈ L(X). We say that the
operator T ∈ L(X) is self-adjoint if T ∗ = T . Therefore, the operator T ∈ L(X) is
self-adjoint if and only if we have

〈T x,y〉 = 〈x,T y〉, ∀x, y ∈ X. (1.23)

1.1.2 Convex Sets

Let X be a real linear space.

Definition 1.10 A subset of the linear space X is said to be convex if whenever
it contains x1 and x2, it also contains λ1x1 + λ2x2, where λ1 ≥ 0, λ2 ≥ 0 and
λ1 + λ1 = 1.
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We denote

[x1, x2] = {λ1x1 + λ2x2; λ ≥ 0, λ2 ≥ 0, λ1 + λ2 = 1},
called the segment generated by elements x1, x2.

Definition 1.11 A subset of the linear space X is said to be an affine set if, whenever
it contains x1 and x2, it also contains λ1x1 + λ2x2 for arbitrary λ1, λ2 ∈ R so that
λ1 + λ1 = 1. If x1, x2, . . . , xn are finitely many elements of X, every element of the
form λ1x1 + λ2x2 + · · · + λnxn, where λi ∈R and λ1 + λ2 + · · · + λn = 1 is called
an affine combination of x1, x2, . . . , xn. Moreover, if λi ≥ 0, the affine combination
is called a convex combination.

Proposition 1.12 Any convex (affine) set contains all the convex (affine) combina-
tions formed with its elements.

Proof Applying mathematical induction, we observe that a convex (affine) combi-
nation of n elements x1, x2, . . . , xn is a convex (affine) combination of n − 1 ele-
ments,

λ1x1 + λ2x2 + · · · + λnxn = λ1x1 + · · · + λn−2xn−2 + (λn−1 + λn)x̃n−1,

where

x̃n−1 = λn−1

λn−1 + λn

xn−1 + λn

λn−1 + λn

xn

is also a convex (affine) combination of two elements whenever λn−1 + λn �= 0.
(The case λi + λj = 0 for all i, j = 1,2, . . . , n, i �= j , is not possible.) Hence, ac-
cording to Definitions 1.10 and 1.11, it is an element of the same convex (affine)
set. �

From the above definitions, it follows immediately that:

(i) The intersection of many arbitrary convex (affine) sets is again a convex (affine)
set.

(ii) The union of a directed by inclusion family of convex (affine) sets is a convex
(affine) set.

(iii) If A1,A2, . . . ,An are convex (affine) sets and λ1, λ2, . . . , λn ∈R, then λ1A1 +
· · · + λnAn is a convex (affine) set.

(iv) The linear image and the linear inverse image of a convex (affine) set are again
convex (affine) sets.

(v) If X is a linear topological space, then the closure and the interior of a convex
(affine) set is a set of the same kind.

The property of stability under intersection leads to the introduction of the convex
(affine) hull, denoted by convA(affA), of an arbitrary set A as the intersection of
all convex (affine) sets containing it. In other words, convA (affA) is the smallest
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convex (affine) set which contains the set A. Using Proposition 1.12, we can easily
show that the elements of the convex (affine) hull can be represented only with the
elements of the given set.

Theorem 1.13 The convex (affine) hull of a set A of X coincides with the set of all
convex (affine) combinations of elements belonging to A, that is,

convA =
{

n∑

i=1

λixi; n ∈N
∗, λi ≥ 0, xi ∈ A,

n∑

i=1

λi = 1

}

, (1.24)

affA =
{

n∑

i=1

λixi; n ∈N
∗, λi ∈ R, xi ∈ A,

n∑

i=1

λi = 1

}

. (1.25)

We remark that an affine set is a linear subspace if and only if it contains the
origin. In general, we have the following proposition.

Proposition 1.14 In a real linear space, a set is affine if and only if it is a translation
of a linear subspace.

Definition 1.15 A point x0 ∈ X is said to be algebraic relative interior of A ⊂ X if,
for every straight line through x0 which lies in affA, there exists an open segment
contained in A which contains x0. If affA = X, the point x0 is called the algebraic
interior of A. The set of all the algebraic (relative) interior points of A is called the
algebraic (relative) interior of the set A and we denote it by (Ari)Ai.

Definition 1.16 If X is a topological vector space, then a point x0 ∈ X is said to be
a relative interior of A ⊂ X if it is an interior point (in a topological sense) of A

with respect to the topology induced on affA. The set of all relative interior points
of A is called the relative interior of A, and we denote it by riA. Also, we denote
the interior of A by intA.

Thus, riA = intA if affA = X. On the other hand, it is clear that affA = X if
intA �= ∅ or Ai �= ∅.

Similarly, we can define Aac, the algebraic closure of a convex set A, as the set
of all points x ∈ X for which there exists u ∈ A such that [u,x[ ⊂ A, where [u,x[
is the segment joining u and x, including u and excluding x.

Now, we define the Minkowski functional associated to a set A which contains
the origin by

pA(x) = inf

{

λ ∈R+; 1

λ
x ∈ A

}

, ∀x ∈ X, (1.26)

where R+ = ]0,+∞] and we admit that 1
+∞ = 0 and 0 · ∞ = 0.

We denote DompA = {y ∈ Y ; pA(x) < ∞}.
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The Minkowski functional has the following properties:

(i) pA(x) ≥ 0, ∀x ∈ X and pA(0) = 0
(ii) pA(λx) = λpA(x), ∀λ ≥ 0, ∀x ∈ X

(iii) A ⊂ {x ∈ X; pA(x) ≤ 1}
(iv) pA1(x) ≤ pA2(x), ∀x ∈ X, if A1 ⊃ A2.

Generally, any functional having property (ii) is called a positive-homogeneous
functional.

It is easy to show that pA(x) < ∞, ∀x ∈ X, if and only if A is an absorbent set;
that is, for every x ∈ X there is a λ > 0 such that λx ∈ A.

If we mean by the radial boundary of a set A, denoted by Arb, the set of all
elements x ∈ X for which [u,x] ∩ A �= ∅ for every u ∈ ]0, x[, and λx /∈ A for every
λ > 1, then we see that

pA = p{0}∪Arb .

From this result, we remark that the Minkowski functional is perfectly determined
only by the radial boundary. Also, we have

Arb = {
x ∈ X; pA(x) = 1

}
.

Moreover, if the set A is convex, then pA is subadditive; hence, pA is a sublinear
functional (positive-homogeneous and subadditive). In this case, property (iii) can
be completed by

(iii)′ {x ∈ X;pA(x) < 1} ⊂ A ⊂ {x ∈ X;pA(x) ≤ 1}.
To establish some sufficient conditions under which we have equality in the right-
hand side or in the left-hand side of (iii)′, we shall use the algebraic notions given
in Definition 1.15.

However, these notions simultaneously have a topological role to play: thus, in
finite topological linear spaces, they coincide with the notions contained in Defini-
tion 1.16 (see Proposition 1.17). We also note that if the set A is convex, then a point
x0 ∈ A is algebraic relative interior to A if and only if for every x ∈ affA there is
ρ > 0 such that x0 + ρ(x − x0) ∈ A. In other words, this is the case if and only if
A − x0 is absorbent in the linear subspace generated by A − x0. In particular, if A

is absorbent, then the origin is an algebraic interior point.

Proposition 1.17 Let X be a finite-dimensional separated topological linear space
and let A be a convex set of X. A point x0 ∈ A is algebraic interior of A if and only
if x0 is an interior point (in the topological sense) of A.

Proof Let V be the family of all symmetric, absorbent and convex sets of X. It
is well known that V generates a separated linear topology on X. Then we observe
that a point is algebraic interior to a convex set if and only if it is interior with respect
to this linear topology generated by V . On the other hand, on a finite-dimensional
linear space there exists a unique separated linear topology, from which the fol-
lowing statement results. �
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Corollary 1.18 A point x0 ∈ A, where A is a convex set from a finite-dimensional
separated topological linear space, is an algebraic relative interior point of A if and
only if it is a relative interior point of A.

If X is a separated topological linear space, it can easily be shown that every
(relative) interior point of a set is again an algebraic (relative) interior point of this
set, that is,

intA ⊂ Ai and riA ⊂ Ari. (1.27)

If A is convex, this result can be completed by the following.

Proposition 1.19 If A is a convex set for which the origin is an algebraic relative
interior point, then

Ari = {
x ∈ X; pA(x) < 1

}
and Aac = {

x ∈ X; pA(x) ≤ 1
}
.

Proof Since 0 ∈ A, we find as a result that linA is a linear subspace and then x0 ∈ A

is an algebraic relative interior if and only if for every x ∈ affA there is ρ > 0 such
that x0 + ρx ∈ A. Thus, if x0 ∈ Ari, there is ρ0 > 0 such that x0 + ρ0x0 ∈ A; hence,
pA(x0) ≤ 1

1+ρ0
< 1.

Conversely, if pA(x0) < 1 and x ∈ affA, there exists ρ > 0 such that pA(x0) +
ρpA(x) < 1. From this, we have pA(x0 + ρx) < 1, which implies x0 + ρx ∈ A. By
a similar argument, we can obtain the other equality. �

Corollary 1.20 The interior of a convex set is either an empty set or it coincides
with its algebraic interior.

Proof If intA �= ∅, we can assume without loss of generality that 0 ∈ intA.
Thus, there exists a neighborhood V of the origin such that V ⊂ A. Hence,
pA(x) ≤ 1, ∀x ∈ V . Let x0 be an algebraic interior point of A. According to Propo-
sition 1.19, there exists ε0 > 0 such that pA(x0)+ε0 < 1. Since pA(x0+ε0x) ≤
pA(x0)+ε0pA(x) < 1, ∀x ∈ V , as a result of property (iii)′ of convex sets we see
that x0 + εV ⊂ A, that is, x0 ∈ intA, which together with relation (1.27) implies
intA = Ai. �

Corollary 1.21 The Minkowski functional of a convex, absorbent set A of a topolo-
gical linear space is continuous if and only if intA �= ∅. In this case, we have

intA = Ai, A = Aac, FrA = Arb,

where FrA = A ∩ cA.

Finally, let us see what happens when a functional on a linear space coincides
with the Minkowski functional of a convex set.

Proposition 1.22 If p : X → ]−∞,∞] is a proper sublinear, nonnegative function,
then:
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(i) A1 = {x ∈ X; p(x) < 1} has only relative algebraic interior points
(ii) A2 = {x ∈ X; p(x) ≤ 1} coincides with its algebraic closure

(iii) pA = p, if A1 ⊂ A ⊂ A2.

Proof First, we see that 0 ∈ A1 ∩ A2, affA1 = affA2, which are proper linear sub-
spaces. As we have seen in the second half of the proof of Proposition 1.19, the ori-
gin is an algebraic relative interior point to A1; hence it is of the same type for A2.
Consequently, it is sufficient to prove only statement (iii).

But for every λ > 0 such that p(x) < λ, we find as a result that 1
λ

x ∈ A1 and so
pA1(x) ≤ λ, that is, pA1(x) ≤ p(x).

If p(x) = 0, then λx ∈ A1 ∩ A2, for every λ > 0, and we obtain pA1(x) =
pA2(x) = 0.

If p(x) �= 0, for every λ ∈ R with 0 < λ < p(x), we have 1
λ

x /∈ A2; hence, λ ≤
pA2(x), that is, p(x) ≤ pA2(x). Since A1 ⊂ A2, we find as a result that pA2 ≤ pA1 .

Now, using the two inequalities established above, we obtain pA1 = pA2 = p,
which implies statement (iii). �

Corollary 1.23 Let X be a topological linear space and let A be a convex set of X

containing the origin. Then

(i) A = {x ∈ X;pA(x) ≤ 1} if A is closed
(ii) A = {x ∈ X;pA(x) < 1} if A is open.

Remark 1.24 An important problem is to specify the conditions under which the re-
lative interior of a set is nonempty. For instance, we can show that every nonempty
convex set of Rn has a nonempty relative interior. On the other hand, in a Banach
space, for a closed convex set its interior is the same as its algebraic interior, be-
cause every Banach space is of the second category.

Many special properties of convex sets in a linear space may be found in the
books of Eggleston [13] and Valentine [28].

Definition 1.25 A maximal affine set is called a hyperplane. We say that the hy-
perplane is homogeneous (nonhomogeneous) if it contains (does not contain) the
origin.

Since every affine set is the translation of a linear subspace, as a result we find
that a set is a hyperplane if and only if it is the translation of a maximal linear
subspace. In particular, the homogeneous hyperplanes coincide with the maximal
linear subspaces.

Proposition 1.26 In a real topological linear space X, any homogeneous hyper-
plane is either closed or dense in X.

Proof If H is a homogeneous hyperplane, then H is evidently a linear subspace;
hence, from the maximality of H , since H ⊂ H , we find as a result that H = H or
H = X, as claimed. �
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The next theorem, concerning the connection between hyperplanes and linear
functionals, represents a fundamental result in the theory of hyperplanes.

Theorem 1.27 The kernel of a nontrivial linear functional is a homogeneous hyper-
plane. Conversely, for every homogeneous hyperplane H there exists a functional,
uniquely determined up to a nonzero multiplicative constant, with the kernel H .

Proof If it is a nontrivial linear functional, it can be observed that its kernel, kerf =
f −1({0}), is a linear subspace. Let Y be a linear subspace, which strictly contains
the kernel, that is, there exists y0 ∈ Y such that f (y0) �= 0. For every x ∈ X we have

x =
(

x − f (x)

f (y0)
y0

)

+ f (x)

f (y0)
y0 = u + λy0 ∈ Y,

because u = x − f (x)
f (y0)

y0 ∈ kerf ⊂ Y . Thus, X = Y . Hence, kerf is maximal,
that is, it represents a homogeneous hyperplane. Now, let H be a homogeneous
hyperplane and let z0 ∈ X \ H . Since the linear subspace spanned by H ∪ {z0}
strictly contains H , it must coincide with X. Therefore, every x ∈ X can be repre-
sented uniquely as x = u + λz0, u ∈ H , λ ∈ R. We define the functional f on X by
f (x) = λ, if x = u + λz0. One can easily verify that f is linear and kerf = H .

Let f1 and f2 be two nontrivial linear functionals such that kerf1 = kerf2. If
x0 ∈ kerf1, we have as a result that x − f1(x)

f1(x0)
x0 ∈ kerf1 for every x ∈ X. Con-

sequently, f2(x − f1(x)
f1(x0)

x0) = 0, that is, f2(x) = kf1(x) for every x ∈ X, where

k = f2(x0)
f1(x0)

is a real constant. Hence, the theorem ensures the uniqueness of the func-
tional up to a nonzero multiplicative constant. �

Corollary 1.28 If f is a nontrivial linear functional on the linear space X, then
{x ∈ X;f (x) = k} is a hyperplane of X, for every k ∈ R. Conversely, for ev-
ery hyperplane H , there exists a linear functional f and k ∈ R, such that H =
{x ∈ X;f (x) = k}.

Corollary 1.29 A hyperplane is closed if and only if it is determined by a noniden-
tically zero continuous linear functional.

Proof Use Theorems 1.2 and 1.27. �

From the above considerations, it follows that every hyperplane verifies an equa-
tion of the form

f (x) = k, k ∈R.

For k �= 0, we can put this equation in the form

f (x) = 1.

In this form, the linear functional f is uniquely determined by the nonhomogeneous
hyperplane.



1.1 Convexity in Topological Linear Spaces 13

If the hyperplane is homogeneous, then f is nonunique. More precisely, if
kerf1 = kerf2, then f1 = af2, where a is a nonzero constant. Along these lines,
we inductively obtain a more general result.

Theorem 1.30 If f,f1, f2, . . . , fn are n+ 1 linear functionals, such that f (x) = 0,
whenever f1(x) = f2(x) = · · · = fn(x) = 0, then f is a linear combination of
f1, f2, . . . , fn.

Proof Applying mathematical induction, we observe that in kerfn we have n

linear functionals f,f1, f2, . . . , fn−1 having the property that f (x) = 0, when-
ever f1(x) = f2(x) = · · · = fn−1(x) = 0 if x ∈ kerfn. Consequently, there exists
λ1, λ2, . . . , λn ∈ R, such that f (x) = ∑n−1

i=1 λifi(x), x ∈ kerfn.
Now, we observe that fn and f −∑n−1

i=1 λifi are two linear functionals having the
same kernels. Thus, by Theorem 1.27, there exists λn ∈R, such that f −∑n−1

i=1 fi =
λnfn, as claimed. �

1.1.3 Separation of Convex Sets

If f (x) = k, k ∈ R, is the equation of a hyperplane in a real linear space X, we have
two open half-spaces {x ∈ X;f (x) < k}, {x ∈ X;f (x) > k} and two closed half-
spaces {x ∈ X;f (x) ≤ k}, {x ∈ X;f (x) ≥ k}. It is clear that the algebraic boundary
of each of the four half-spaces is just the hyperplane f (x) = k. It should be empha-
sized that a convex set which contains no point of a hyperplane is contained in one
of the two open half-spaces determined by that hyperplane. Indeed, if f (x1) > k and
f (x2) < k, there exists λ ∈ ]0,1[, such that f (λx1 + (1−λ)x2) = k, hence x1 and x2
cannot be contained in a convex set which is disjoint from the hyperplane f (x) = k.

Remark 1.31 An open half-space has only algebraic interior points and each closed
half-space coincides with its algebraic closure. If X is a topological linear space,
then the open half-spaces are open sets and the closed half-spaces are closed sets if
and only if the linear functional f which generated them is continuous, or, equiva-
lently, the hyperplane {x ∈ X;f (x) = k} is closed (cf. Corollary 1.29).

In the following, we deal with sufficient conditions which ensure that two convex
sets can be separated by a hyperplane. Such results are immediate consequences of
the Hahn–Banach Theorem. For this purpose, we define the concept of a convex
function which generalizes that of a subadditive functional.

Definition 1.32 A function p : X → ]−∞,+∞] is called convex if

p(λ1x1 + λ2x2) ≤ λ1p(x1) + λ2p(x2), (1.28)

for all x1, x2 ∈ X and λ1 ≥ 0, λ2 ≥ 0, with λ1 + λ2 = 1. If inequality (1.28) is strict
for x1 �= x2 in Dom(p) and λ1 > 0, λ2 > 0, then the function p is called strictly
convex.
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It easily follows that inequality (1.28) is equivalent to the property

(a1 + a2)p

(
a1x1 + a2x2

a1 + a2

)

≤ a1p(x1) + a2p(x2), (1.29)

for all x1, x2 ∈ X and a1 > 0, a2 > 0.
The Minkowski functionals of convex sets which contain the origin are examples

of convex functions.

Theorem 1.33 (Hahn–Banach) Let X be a real linear space, let p be a real convex
function on X and let Y be a linear subspace of X. If a linear functional f0 defined
on Y satisfies

f0(y) ≤ p(y), ∀y ∈ Y, (1.30)

then f0 can be extended to a linear functional f defined on all of X, satisfying

f (x) ≤ p(x), ∀x ∈ X. (1.31)

Proof If u,v ∈ Y, x0 ∈ X \ Y and α > 0, β < 0, according to relations (1.29)
and (1.30), it follows that

αf0(u) − βf0(v) = f0(αu − βv) = (α − β)f0

[
α(u + 1

α
x0)

α − β
+ −β(v + 1

β
x0)

α − β

]

≤ (α − β)p

[
α(u + 1

α
x0)

α − β
+ −β(v + 1

β
x0)

α − β

]

≤ αp

(

u + 1

α
x0

)

− βp

(

v + 1

β
x0

)

.

Thus, there exists c ∈R such that

sup

{

β

[

p

(

v + 1

β
x0

)

− f0(v)

]

; v ∈ Y, β < 0

}

≤ c ≤ inf

{

α

[

p

(

u + 1

α
x0

)

− f0(u)

]

; u ∈ Y, α > 0

}

. (1.32)

First, we prove that f0 can be extended to the linear subspace X1 = span(Y ∪ {x0})
preserving the linearity and the boundedness condition (1.30). We observe that each
element x1 ∈ X1 has the form x1 = y + λx0, with y ∈ Y and λ ∈ R uniquely deter-
mined. We define the functional f1 on X1 by f1(x1) = f0(y) + λc if x1 = y + λx0,
with y ∈ Y and λ ∈ R. It can easily be seen that f1 is linear on X1 and f |Y = f0.
To prove the boundedness property (1.30) on X1, we consider two cases: λ < 0 and
λ > 0 (the case λ = 0 is obvious). Thus, if x1 = y + λx0, y ∈ Y and λ �= 0, then we
have

f1(x1) = f0(y) + λc ≤ f0(y) + λ

[
1

λ
p(y + λx0) − 1

λ
f0(y)

]

= p(x1)
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as follows from the left-hand side of relation (1.32) for v = y and β = 1
λ

if λ < 0
or from the right-hand side of (1.32) for u = y and α = 1

λ
if λ > 0. Using the Zorn

Lemma (any nonvoid ordered set has at least one maximal element), it is clear that
every maximal element of the set of all the linear functionals which extend f0 and
preserve the boundedness property (1.30) on the linear subspaces on which they are
defined is again a linear functional defined on the whole of X. Indeed, otherwise,
according to the above, a strict extension would exist, which would contradict the
maximality property. Thus, any maximal element has all the required properties of
the theorem. �

Remark 1.34 From the above proof, we see that the theorem remains valid if the
convex function p takes also infinite values but has the following property:

if x ∈ X \ Y and p(y + kx) = ∞, for all y ∈ Y and k > 0, then p(y + kx) = ∞
for all y ∈ Y and k < 0. Particularly, it suffices that

Y ∩ (
Dom(p)

)ri �= ∅.

It can be easily seen that the Hahn–Banach Theorem 1.33 may be, equivalently,
reformulated in the following form.

Theorem 1.35 If A is a convex set with Ari �= ∅ and M is an affine set such that
M ∩Ari = ∅, then there exists a hyperplane containing M , which is disjoint from Ari.

Proof We may suppose, without loss of generality, that 0 ∈ Ari. Hence, 0∈M and
M is a maximal affine set in spanM . According to Corollary 1.28, there exists a
linear functional f0 on spanM such that M = {y ∈ spanM;f0(y) = 1}. On the
other hand, by Proposition 1.19 we have Ari = {x ∈ X; pA(x) < 1}. If f0(y) > 0, it
follows that y

f0(y)
∈ M , hence y

f0(y)
∈Ari and this implies pA(

y
f0(y)

) ≥ 1 or f0(y) ≤
pA(y). This inequality is obvious in the case f0(y) ≤ 0. Thus, we have f0(y) ≤
pA(y) for all y ∈ spanM . By the Hahn–Banach Theorem 1.33 (see also the last part
of Remark 1.34), there exists a linear extension f of f0 on the whole of X such that
f (x) ≤ pA(x), x ∈ X. If u ∈ Ari, we have pA(u) < 1, so that f (u) < 1. Hence, Ari

is disjoint from the nonhomogeneous hyperplane f (x) = 1, which contains M .
If X is finite-dimensional, according to Remark 1.24, the hypothesis Ari �= ∅ is

fulfilled for any nonvoid convex set.
The result of the algebraic type established by Theorem 1.35 may be improved

if X becomes a linear topological space. In this context, we have the well-known
geometric form of the Hahn–Banach Theorem. �

Theorem 1.36 If A is a convex set with a nonempty interior and if M is an affine set
which contains no interior point of A, then there exists a closed hyperplane which
contains M and which again contains no interior point of A.

Proof In our hypothesis, the interior of A coincides with its algebraic interior
(cf. Corollary 1.20). Thus, it is sufficient to prove that the linear functional found
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in the proof of the previous theorem is continuous. Continuity holds since the
Minkowski functional associated to A is continuous (cf. Corollary 1.21). �

Corollary 1.37 On a topological linear space there exist nontrivial continuous lin-
ear functionals (or closed hyperplanes) if and only if there exist proper convex sets
with nonempty interior. On any proper locally convex space there exist nontrivial
continuous functionals and closed hyperplanes.

A hyperplane H is called a supporting hyperplane of a set A if H contains at least
one point of A and A lies in one of the two closed half-spaces determined by H . In
the analytic form, this fact ensures the existence of a nontrivial linear functional f

and an element x0 ∈ A, such that

sup
{
f (x); x ∈ A

} = f (x0).

In a linear topological space, any supporting hyperplane of a set with a nonempty
interior is closed. A point of A through which a supporting hyperplane passes is
called a support point of A. It is clear that an algebraic interior point cannot be a
support point. Hence, any support point is necessarily an algebraic boundary point.
Now, we give a simple condition under which a boundary point is a support point.

Theorem 1.38 If the interior of a convex set is nonempty, then all the boundary
points are support points.

Proof Apply Theorem 1.36 for M = {x0}, where x0 is an arbitrary boundary
point. �

Remark 1.39 The uniqueness of the supporting hyperplane passing through a sup-
port point depends on the differentiability property of the Minkowski functional
associated with that set (see Sect. 2.2.2). We restrict our attention to the case in
which two convex sets may be separated by a hyperplane, that is, they are contained
in different half-spaces. If they are contained even in different open half-spaces, the
sets are said to be strictly separated by that hyperplane.

Theorem 1.40 If A1 and A2 are two nonempty convex sets and if at least one of
them has a nonempty interior and is disjoint from the other set, then there exists a
separating hyperplane. Moreover, if A1 and A2 are open, the separation is strict.

Proof Suppose that intA2 �= ∅ and A1 ∩ intA2 = ∅. The set A = A1 − intA2 is
open convex and does not contain the origin. For M = {0}, from Theorem 1.36
there exists a closed hyperplane H1 such that H1 ∩ A = ∅ and 0 ∈ H1. Therefore,
H1 is a homogeneous hyperplane for which A lies in one of the open half-spaces.
According to Theorem 1.27 and Corollary 1.29, there exists a continuous linear
functional f which has as kernel H1. Hence, f keeps a constant sign of A. Suppose
that f (x) > 0, ∀x ∈ A, that is, f (u) > f (v), ∀u ∈ A1, ∀v ∈ A2, which implies

inf
{
f (u); u ∈ A1

} ≥ sup
{
f (x); v ∈ A2

}
. (1.33)
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Since A2 being convex, A2 ⊂ intA2. Clearly, the hyperplane f (x) = k, where k =
infu∈A1 f (u), is closed and separates A1 and A2. If A1 and A2 are open, we have
f (u) > k > f (v), ∀u ∈ A1, ∀v ∈ A2, since A1 and A2 have no boundary points. �

Corollary 1.41 If A1 and A2 are two nonempty disjoint convex sets of Rn, there
exists a nonzero element c = (c1, c2, . . . , cn) ∈R

n \ {0}, such that

n∑

i=1

ciui ≤
n∑

i=1

civi, ∀u = (ui) ∈ A1, ∀v = (vi) ∈ A2.

Proof Let us write A = A1 −A2. Since Ari �= ∅ (see Remark 1.24) and 0∈A, we can
apply Theorem 1.35 for M = {0}. Taking into account the form of nontrivial linear
functionals on R

n, we find c = (c1, c2, . . . , cn) ∈ R
n \ {0}, such that

∑n
i=1 ciai < 0

for all (a1, a2, . . . , an) ∈ Ari and so
∑n

i=1 ciai ≤ 0 for all (a1, a2, . . . , an) ∈ A =
A1 −A2, because the interior of any segment joining a point of A and a point of Ari

contains only points of Ari. �

Remark 1.42 From Theorem 1.35, we can obtain a result, being of algebraic type,
similar to that obtained using Theorem 1.40.

Remark 1.43 If we drop the condition that A1 and A2 are open, Theorem 1.40 is no
longer true, as can be shown by counter-examples that can readily be constructed.
Thus, the disjoint convex sets

A1 = {
(x1, x2); x1 ≤ 0

}
and A2 = {

(x1, x2); x1x2 ≥ 1, x1 ≥ 0, x2 ≥ 0
}

have nonempty interiors in R
2 but cannot be strictly separated; the single separation

hyperplane is x1 = 0.

Theorem 1.44 If F1 and F2 are two disjoint nonempty closed convex sets in a sep-
arated locally convex space such that at least one of them is compact, then there
exists a hyperplane strictly separating F1 and F2. Moreover, there exists a conti-
nuous linear functional f such that

sup
{
f (x); x ∈ F1

}
< inf

{
f (x); x ∈ F2

}
. (1.34)

Proof Suppose that F2 is compact. Since any separated locally convex space is reg-
ular, there exists an open symmetric and convex neighborhood of the origin V such
that F1 ∩ (F2 + V ) = ∅.

Thus, we may apply Theorem 1.40 to conclude that there exists a nontrivial con-
tinuous functional f such that

sup
{
f (x); x ∈ F1

} ≤ inf
{
f (y); y ∈ F2 + V

}
.

But inf{f (v);v ∈ V } < 0, since V is absorbent and f is a nontrivial linear func-
tional. Hence, relation (1.34) holds. It is clear that {x ∈ X;f (x) = k} is a strict
separation hyperplane for any k ∈ ]sup{f (x);x ∈ F1}, inf{f (x);x ∈ F2}[. �
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Corollary 1.45 If x0 ∈F , where F is a nonempty closed convex set of a separated
locally convex space, then there exists a closed hyperplane strictly separating F

and x0, that is, there is a nontrivial continuous linear functional such that

sup
{
f (x); x ∈ F

}
< f (x0).

Remark 1.46 Generally, if inequality (1.34) is fulfilled, we say that the sets F1 and
F2 are strongly separated by the hyperplane f (x) = k, where k ∈ ]sup{f (x);x ∈
F1}, inf{f (x);x ∈ F2}[. We observe that two convex sets A,B can be (strongly)
separated if and only if the origin can be (strongly) separated from A − B .

Remark 1.47 If the set F from Corollary 1.45 is a closed linear subspace, then f

must be null on F . Therefore, a linear subspace is dense in X if and only if every
continuous linear functional which is null on it, is null on X.

Now, as a consequence of the separation theorems, we obtain the following re-
markable theorem concerning the characterization of closed convex sets.

Theorem 1.48 A proper convex set of a separated locally convex space is closed if
and only if it coincides with an intersection of closed half-spaces.

Proof The sufficiency is obvious. To prove the necessity, we consider the set
{Si; i ∈ I } of all closed half-spaces which contain the proper convex closed set F .

For every x0 ∈F , taking f as in Corollary 1.45, we have F ⊂ {x;f (x) ≤ k0}
and f (x0) > k0, where k0 = sup{f (x);x ∈ F }. Therefore, there exists i0 ∈ I such
that Si0 = {x;f (x) ≤ k0}, hence CF ⊂ ⋃

i∈I CSi , that is, F ⊃ ⋂
i∈I Si . On the other

hand, it is clear that F ⊂ ⋂
i∈I Si , hence F = ⋂

i∈I Si and the theorem is completely
proven. �

Corollary 1.49 A closed convex set with nonempty interior of a separated locally
convex space coincides with the intersection of all half-spaces generated by its sup-
porting hyperplanes.

In the following, we consider the special case of linear normed spaces. The
Hahn–Banach Theorem 1.33 ensures in this case the existence of continuous linear
extensions which preserve the norm. We recall that the dual X∗ of a normed linear
space X is the set of all continuous linear functionals on X; it is again a normed
space.

Theorem 1.50 Let f0 be a continuous linear functional on a linear subspace Y of
a linear normed space X. Then there exists a continuous linear functional f on the
whole of X, that is, f ∈ X∗, such that

(i) f |Y = f0

(ii) ‖f ‖ = ‖f0‖.
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Proof Since f0 is continuous on Y , by (1.10) we have f0(y) ≤ ‖f0‖‖y‖, ∀y ∈ Y . �

Now, we can apply the Hahn–Banach Theorem (Theorem 1.33) for f0 and for
the convex function p(x) = ‖f0‖‖x‖.

A specialization of this theorem yields a whole class of existence results. In this
context, we present a general and classical theorem concerning the existence of
continuous linear functionals with important consequences in the duality theory of
linear normed spaces.

Theorem 1.51 Let m be a nonnegative number and let h : A → R be a given real
function, where A is a nonempty set of the linear normed space X. Then h has a
continuous linear extension f on all of X such that ‖f ‖ ≤ m if and only if the
following condition holds:

∣
∣
∣
∣
∣

n∑

i=1

λih(ai)

∣
∣
∣
∣
∣
≤ m

∥
∥
∥
∥
∥

n∑

i=1

λiai

∥
∥
∥
∥
∥
, ∀n ∈N

∗, λi ∈R, ai ∈ A. (1.35)

Proof From relations (1.8) and (1.9) it is clear that condition (1.35) is necessary. To
prove sufficiency, we consider Y = spanA and we define f0 on Y by

f0(y) =
n∑

i=1

λih(ai), if y =
n∑

i=1

λiai ∈ Y, ai ∈ A.

First, using condition (1.35), we observe that f0 is well defined on Y . Moreover,
from condition (1.35), continuity of f0 on Y follows and ‖f0‖ ≤ m. Thus, any ex-
tension given under Theorem 1.50 has all the required properties. �

Theorem 1.52 For any linear subspace Y of a normed linear space X and x ∈ X

there exists f ∈ X∗ with the following properties:

(i) f |Y = 0
(ii) f (x) = d2(x;Y)

(iii) ‖f ‖ = d(x;Y).

Proof We take A = Y ∪ {x} and h : A →R defined by h(y) = 0, y ∈ Y , and h(x) =
d2(x;Y). We observe that, for any λ �= 0, we have

∣
∣
∣
∣
∣
λh(x) +

n∑

i=1

λih(ai)

∣
∣
∣
∣
∣
= ∣

∣λh(x)
∣
∣ = |λ|d2(x;Y)

≤ |λ|d(x;Y)

∥
∥
∥
∥
∥
x +

n∑

i=1

λi

λ
ai

∥
∥
∥
∥
∥

= d(x;Y)

∥
∥
∥
∥
∥
λx +

n∑

i=1

λiai

∥
∥
∥
∥
∥
,

which is just inequality (1.35). The desired result then follows by applying the pre-
vious theorem. Indeed, we have properties (i) and (ii) and ‖f ‖ ≤ d(x;Y) since
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m = d(x;Y). On the other hand, if we consider a sequence {yn} ⊂ Y such that
‖x + yn‖ → d(x;Y), we obtain

‖f ‖ ≥ f

(
x + yn

‖x + yn‖
)

= f (x)

‖x + yn‖ = d2(x;Y)

‖x + yn‖ → d(x;Y),

which implies ‖f ‖ ≥ d(x;Y). Hence, property (iii) also holds. �

Corollary 1.53 In a linear normed space X, for every x ∈ X there exists a conti-
nuous linear functional f ∈ X∗ such that

(i) f (x) = ‖x‖2

(ii) ‖f ‖ = ‖x‖.

Moreover, if x �= 0, there exists g ∈ X∗ such that

(i)′ g(x) = ‖x‖
(ii)′ ‖g‖ = 1.

Proof Theorem 1.52 can be applied where Y = {0}, hence d(x;Y) = ‖x‖. �

In particular, relations (1.9) and (1.10) and the second part of Corollary 1.53 yield
the following corollary.

Corollary 1.54 For any x ∈ X, we have

‖x‖ = max
‖x∗‖≤1

∣
∣(x, x∗)

∣
∣ = max

‖x∗‖≤1
(x, x∗). (1.36)

This formula is known as the dual formula of the norm in a linear normed space.

1.1.4 Closedness of the Sum of Two Sets

It is well known that, generally, in a linear topological space, the sum of two closed
sets is not a closed set. But if one of the two sets is compact, then the sum is
also closed (the property can be immediately verified using the nets). Furthermore,
Klee [18] showed that in a Banach space the sum of two bounded closed convex
sets is always closed if and only if the space is reflexive (see, also, Köthe [19],
p. 322).

Because the compactness (or boundedness and reflexivity) hypotheses are too
strong, in practice we use suitable sufficient conditions which ensure the closed-
ness property of the sum of certain pairs of sets. Such a result was established by
Dieudonné [10], replacing the compactness condition by a local condition. Next,
Dieudonné’s criterion is extended in several directions. Thus, we must remark that
the closedness problem of the sum of two sets may be regarded in the framework of
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a more general problem, namely, of the closedness of the image of a set by a multi-
valued function. In the following, we present a general result due to Dedieu [8]. This
result extends to nonconvex case the generalizations of Dieudonné’s criterion [10]
established by Gwinner [14] in the convex case.

If Λ ⊂ Γ and A ⊂ X, we denote

ΛA = {λx; λ ∈ Λ, x ∈ A}.

Definition 1.55 For a given set A, the set A∞ defined by

A∞ =
⋂

ε>0

[0, ε]A (1.37)

is called the asymptotic cone of A.

Remark 1.56 The asymptotic cone A∞ is a closed cone with the vertex in the ori-
gin consisting of all the limits of the convergent nets of the form (λixi)i∈I , where
(λi)i∈I is a net of positive numbers convergent to zero and (xi)i∈I is a net of ele-
ments of A. Also, A∞ = A if and only if A is a closed cone.

If the set A is convex and closed, then the asymptotic cone can be equivalently
defined by

A∞ =
⋂

ε>0

ε(A − a), (1.38)

where a is an arbitrary fixed element of A. In this case, A∞ is also convex.

Definition 1.57 A set A is called asymptotically compact if there exists ε0 > 0 and
a neighborhood V0 of the origin such that ([0, ε0]A) ∩ V0 is relatively compact.

It is easy to observe that a closed convex set or a closed cone is asymptotically
compact if and only if it is locally compact. Generally, for nonconvex sets these
concepts are different. If A is closed and asymptotically compact, then A and A∞
are locally compact, but the converse is false.

Theorem 1.58 Let E1,E2 be two separated linear topological spaces and let A

be an asymptotically compact and closed subset of E1. If F : E1 → E2 is a closed
multi-valued mapping, that is, GraphF = {(x, y) ∈ E1 × E2; x ∈ E1, y ∈ F(x)} is
closed in E1 × E2, satisfying the condition

(
A∞ × {0E2}

) ∩ (GraphF)∞ = {0E1×E2}, (1.39)

then F(A) is closed in E2.

Proof Let {yi}i∈I be a net of elements of F(A) convergent to an element y0 ∈ E2
and let us prove that y0 ∈ F(A). Take {xi}i∈I , a net of elements of A such that
yi ∈ F(xi), for every i ∈ I . We can suppose that xi �= 0 for all i ∈ I (taking a subnet)
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since if there exists a subnet xi′ = 0 for all i′ ∈ I ′, then y0 ∈ F(0), as claimed. Let
ε0 and V0 be as in Definition 1.57. Since V0 is absorbent, for each i ∈ I there exist
positive numbers λ > 0 such that λxi ∈ V0. We suppose that V0 is an open circled
neighborhood of the origin and denote λi = min({ε0} ∪ {λ; λ > 0 and 2λxi ∈V0}).
Since λi ∈ ]0, ε0] and λixi ∈ V0, the net {λixi}i∈I contains a subnet convergent to an
element x0 ∈ E1. Without loss of generality, we may assume that even {λixi}i∈I is
convergent. Also, since {λi}i∈I is bounded, we can suppose that it is convergent to an
element λ0 ≥ 0. If λ0 �= 0, the net {xi}i∈I is also convergent to x′

0 = 1
λ0

x0 ∈ A since
A is closed. Hence, {(xi, yi)}i∈I ⊂ GraphF is convergent to (x′

0, y0) ∈ GraphF ,
since F is closed, that is, y0 ∈ F(x ′

0) ⊂ F(A) and the proof is finished. Now, we
prove that it is not possible to have λ0 = 0. Indeed, if λ0 = 0, there exists i0 ∈ I

such that λi < ε0 for all i > i0, and so, from the definition of λi , we have

2λixi ∈V0, for all i > i0. (1.40)

On the other hand, according to Remark 1.56 it follows that x0 ∈ A∞ and therefore
the net {(λixi, λiyi)}i∈I is convergent to (x0,0) ∈ A∞ × {0E2}. But (λixi, λiyi) =
λi(xi, yi) ∈ λi GraphF and, by virtue of the same Remark 1.56, its limit belongs
to (GraphF)∞. By condition (1.39), we have x0 = 0, contradicting property (1.40).
Thus, the proof is complete. �

Theorem 1.59 Let E1,E2 be two linear separated topological spaces and let T

be a positive-homogeneous operator defined on a cone of E1 into E2. Let A ⊂ E1,
B ⊂ E2 be two closed sets such that coneA ⊂ domT and such that the restriction
of T to coneA is continuous. If

A∞ ∩ T −1(B∞) = {0} (1.41)

and A is asymptotically compact, then T (A) − B is closed.

Proof It is readily seen that for the multi-valued function F defined by Fx =
T x − B for x ∈ coneA and Fx = ∅ otherwise, the asymptotic separation pro-
perty (1.39) is just condition (1.41). Also, GraphF is closed in E1 × E2. Indeed,
if {(xi, T xi − bi)}i∈I is convergent to (x0, y0), then x0 ∈ A and (bi)i∈I is conver-
gent to T x0 − y0 ∈ B , and so y0 ∈ F(x0). But A being asymptotically compact and
closed, according to Theorem 1.58, it follows that F(A) = T (A) − B is closed. �

Taking B = {0} and T = I (the identity operator), we obtain the following two
special results.

Corollary 1.60 Let T and A be as in Theorem 1.59. If

A∞ ∩ kerT = {0}, (1.42)

then T (A) is closed.
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Corollary 1.61 (Dieudonné) Let A,B be two closed sets such that

A∞ ∩ B∞ = {0}. (1.43)

If A or B is asymptotically compact, then their difference is also closed.

If the sets A and B are also convex, then Corollary 1.61 is just the well-known
Dieudonné criterion (in the convex case, the asymptotical compactness becomes
even local compactness). For closed cones, the preceding results can be improved
by taking into account the following simple result on the characterization of asymp-
totical compactness.

Theorem 1.62 A cone is locally compact (or closed asymptotically compact) if and
only if it can be generated by a compact set which does not contain the origin.

Proof Let A be an asymptotically closed cone and let ε0 and V0 be as in Defini-
tion 1.57. We can suppose that V0 is closed and circled. Since A is a cone, we have
]0, ε0]A = A and so A ∩ V0 is compact. Also, K = A ∩ (V0 \ int 1

2V0) is compact
and does not contain the origin. Conversely, if A = coneK , where K is a compact
set and 0∈K , then there exists a closed circled neighborhood of origin V0 such that
V0 ∩ K = ∅. But V0 ∩ A ⊂ [0,1]K . Indeed, if x ∈ V0 ∩ A, there exists λ > 0 such
that λx ∈ K . If λ ≥ 1, we have x ∈ 1

λ
K ⊂ [0,1]K . If λ < 1, it follows that λx ∈ V0

since V0 is circled and thus V0 ∩K �= ∅, which is a contradiction. Therefore, V0 ∩A

is compact, that is, A is locally compact. �

Corollary 1.63 A locally compact cone is necessarily closed.

Corollary 1.64 If A is a locally compact cone and T is a linear continuous operator
such that

A ∩ kerT = {0}, (1.44)

then T (A) is also a locally compact cone.

Proof Let K be a compact set such that A = coneK and 0∈K . Then T (A) =
coneT (K). The set T (K) is compact and, according to condition (1.44), it does not
contain the origin. Therefore, T (A) is locally compact. �

1.2 Duality in Linear Normed Spaces

We now briefly survey the basic concepts and results related to dual pairs of linear
topological spaces and weak topologies on linear normed spaces.
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1.2.1 The Dual Systems of Linear Spaces

Two linear spaces X and Y over the same scalar field Γ define a dual system if a
fixed bilinear functional on their product is given:

(·, ·) : X × Y → Γ. (1.45)

The bilinear functional is sometimes omitted. The dual system is called separated
if the following two properties hold:

(i) For every x ∈ X \ {0} there is y ∈ Y such that (x, y) �= 0
(ii) For every y ∈ Y \ {0} there is x ∈ X such that (x, y) �= 0.

In other words, X separates points in Y and Y separates points in X.
In the following, we consider only separated dual systems.
For each x ∈ X, we define the application fx : Y → Γ by

fx(y) = (x, y), ∀y ∈ Y. (1.46)

We observe that fx is a linear functional on Y and the mapping

x → fx, ∀x ∈ X, (1.47)

is linear and injective, as can be seen from condition (i). Hence, the correspondence
(1.47) is an embedding. Thus, the elements of X can be identified with the linear
functionals on Y . In a similar way, the elements of Y can be considered as linear
functionals of X, identifying an element y ∈ Y with gy : X → Γ , defined by

gy(x) = (x, y), ∀x ∈ X. (1.48)

Therefore, each dual system of linear spaces defines a mapping from either of the
two linear spaces into the space of linear functionals on the other.

We set

py(x) = ∣
∣(x, y)

∣
∣ = ∣

∣gy(x)
∣
∣, ∀x ∈ X, (1.49)

qx(y) = ∣
∣(x, y)

∣
∣ = ∣

∣fx(y)
∣
∣, ∀y ∈ Y, (1.50)

and we observe that P = {py;y ∈ Y } is a family of seminorms on X and Q =
{qx;x ∈ X} is a family of seminorms on Y . The locally convex topology defined
by P on X is called the weak topology or Y -topology of X induced by the duality
(X,Y ), and we denote it by σ(X,Y ). Similarly, the weak topology or X-topology
of Y , denoted by σ(Y,X), is the locally convex topology on Y generated by Q.
Clearly, the roles of X and Y are interchangeable here, since there is a natural dual-
ity between Y and X which determines a dual system (Y,X). Thus, it is sufficient to
establish the properties only for the linear space X. According to the well-known re-
sults concerning the locally convex topologies generated by families of seminorms,
we immediately obtain the following result.
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Proposition 1.65

(i) σ(X,Y ) is the weakest topology on X which makes the linear functionals gy ,
defined by (1.48), continuous for any y ∈ Y .

(ii) σ(X,Y ) is separated.
(iii) The family of all the sets of the form

Vy1,y2,...,yn;ε(x) = {
u ∈ X; ∣

∣(u − x;yi)
∣
∣ < ε, i = 1,2, . . . , n

}
, (1.51)

where n ∈ N∗, y1, y2, . . . , yn ∈ Y , ε > 0, is a fundamental neighborhood sys-
tem of the element x ∈ X for σ(X,Y ).

(iv) A sequence {xn} ⊂ X is σ(X,Y )-convergent to x0 ∈ X if and only if {(xn, y)}
converges to (x0, y) in Γ , for each y ∈ Y .

(v) If Z is a locally convex space with the topology generated by a family P of
seminorms, then a linear operator T : X → Z is σ(X,Y )-continuous if and
only if for any p ∈ P there are kp > 0 and y1, y2, . . . , yn ∈ Y such that

p(T x) ≤ kp max
1≤i≤n

∣
∣(x, yi)

∣
∣, ∀x ∈ X. (1.52)

From assertion (i), we find as a result that gy is a σ(X,Y )-continuous linear func-
tional on X for every y ∈ Y . It is natural to investigate if the set of linear functionals
of this type coincides with the dual of locally convex space (X,σ (X,Y )). The an-
swer is affirmative. Thus, in view of embedding y → gy , it is possible to regard Y

as the dual of X endowed with weak topology.

Definition 1.66 A linear topology τ on X is called compatible with the duality
(X,Y ) if (X, τ)∗ = Y . Similarly, a linear topology μ on Y is called compatible with
the duality (X,Y ) if (Y,μ)∗ = X.

Hence, σ(X,Y ) and σ(Y,X) are the weakest compatible topologies.
Other properties of the weak topologies are consequences of the fact that each

of these topologies may be considered as a relativized product topology. In this
connection, let us recall some basic results on product topology.

Let {Xα;α ∈ A} be a family of topological spaces. Consider their product space

X =
∏

α∈A

Xα =
{

x : A →
⋃

α∈A

Xα; x(α) ∈ Xα, ∀α ∈ A

}

. (1.53)

Write x(α) = xα, ∀α ∈ A, and x = (xα)α∈A. For each α ∈ A, consider the projec-
tions Pα : X → Xα defined by Pαx = xα , ∀x ∈ X. The space X endowed with the
weakest topology which makes each projection continuous is called the topological
product space of the topological spaces Xα , α ∈ A. Thus, a basis for the product
topology is given by the sets of the form

∏
α∈A Dα , where Dα is an open set in Xα ,

∀α ∈ A, and Dα = Xα , ∀α ∈ A\F , with F a finite subset of A. Also, a fundamental
neighborhood system of an element x = (xα)α∈A ∈ X is given by the sets having
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the form

VF,{Vα;α∈F }(x) = {
u = (uα) ∈ X; uα ∈ Vα(xα), ∀α ∈ F

}
, (1.54)

where F is a finite subset of A and for each α, Vα(xα) runs through a fundamental
neighborhood system of xα ∈ Xα . In particular, a topological product space is sepa-
rated if and only if each factor space is separated. A remarkable result, with various
consequences, is the well-known Tychonoff Theorem.

Theorem 1.67 (Tychonoff) A topological product is compact if and only if each
coordinate space is compact.

Corollary 1.68 A subset M ⊂ ∏
α∈A Xα is compact if and only if it is closed and

Pα(M) is relatively compact in Xα for each α ∈ A.

Proof It suffices to observe that M ⊂ ∏
α∈A Pα(M). �

Proposition 1.69 σ(X,Y ) coincides with the topology induced on X by the topo-
logical product Γ Y .

Proof We recall that Γ Y is the set of all applications defined on Y with values in
Γ . Thus, Γ Y may be regarded as a topological product. On the other hand, using
the embedding (1.47), the linear space X may be considered as a subspace of Γ Y

identifying x ∈ X with the functional fx ∈ Γ Y . According to our convention, we
identify x with (xy)y∈Y , where xy = (x, y). Using formula (1.54), a neighborhood
at x = (xy)y∈Y in the topological product Γ Y has the form V = {u = (uy)y∈Y ∈ Γ Y ;
|uyi

− xyi
| < ε, ∀i = 1,2, . . . , n}, where ε > 0 and {y1, y2, . . . , yn} is a finite subset

of Y . It is clear that V ∩X is a neighborhood of the form (1.51) since, in this case, the
element u = (uy)y∈Y ∈ Γ Y corresponds to an element u ∈ X such that uy = (u, y),
∀y ∈ Y . �

Corollary 1.70 A set M ⊂ X is σ(X,Y )-compact if and only if it is closed in Γ Y

and if, for every y ∈ Y , there exists ky > 0 such that |(x, y)| ≤ ky , ∀x ∈ M .

Proof Apply Corollary 1.68 and recall that in Γ a set is relatively compact if and
only if it is bounded. �

1.2.2 Weak Topologies on Linear Normed Spaces

Let X be a real normed space and let X∗ be its dual, that is, the space of all real con-
tinuous linear functionals on X. We recall that X∗ = L(X,Γ ) is a Banach space. As
is well known, the norm of an element x∗ ∈ X∗ is defined by

‖x∗‖ = sup
‖x‖≤1

∣
∣x∗(x)

∣
∣. (1.55)



1.2 Duality in Linear Normed Spaces 27

There is a natural duality between X and X∗ determined by the bilinear functional
(·, ·) : X × X∗ → Γ , defined by

(x, x∗) = x∗(x), ∀x ∈ X, x∗ ∈ X∗. (1.56)

In the preceding section, we have generated the weak topologies σ(X,X∗) and
σ(X∗,X). The properties of these topologies which do not depend on topologi-
cal structures on X and X∗ are similar. However, different properties still exist be-
cause the two normed spaces X and X∗ do not play symmetric roles; in general,
X is not the dual of X∗ as linear normed space. It can be observed that the previ-
ous property characterizes a special class of normed spaces called reflexive. In fact,
X∗ as a normed space generates the weak topologies σ(X∗,X∗∗) and σ(X∗∗,X∗),
where X∗∗ is the dual space of X∗, called the bidual of X. In general, the topologies
σ(X∗,X) and σ(X∗,X∗∗) are different.

Denote σ(X,X∗) = w and σ(X∗,X) = w∗, preserving the name of weak topol-
ogy only for w. The topology w∗ will be called the weak-star topology on X∗, being
in general different from the weak topology on X∗, which is σ(X∗,X∗∗).

In contrast to these topologies, the initial topologies on X and X∗ generated by
the usual norms will be called the strong topology on X and the strong topology on
X∗, respectively.

We denote by →,
w−→ and

w∗−→ the strong convergence and the weak, weak-star
convergence in X and X∗, respectively.

As follows from Proposition 1.65(iii), a neighborhood base at x0 for the topology
w on X is formed by the sets

Vx∗
1 ,x∗

2 ,...,x∗
n;ε(x0) = {

x ∈ X; ∣
∣x∗

i (x − x0)
∣
∣ < ε, ∀i = 1,2, . . . , n

}
, (1.57)

where ε > 0, n ∈ N
∗ and x∗

1 , x∗
2 , . . . , x∗

n ∈ X∗.
Similarly, the sets of the form

Vx1,x2,...,xn;ε(x∗
0 ) = {

x∗ ∈ X∗; ∣
∣(x∗ − x∗

0 )(xi)
∣
∣ < ε, ∀i = 1,2, . . . , n

}
, (1.58)

where ε > 0, n ∈ N
∗, x1, x2, . . . , xn ∈ X, constitute a neighborhood base at x∗

0 for
the topology w∗ on X∗.

Proposition 1.71 below sums up some elementary properties of the weak (weak-
star) topology.

Proposition 1.71 If X is a linear normed space, then

(i) w(w∗) is a separated locally convex topology on X(X∗).
(ii) w(w∗) is the coarsest linear topology on X(X∗) for which X∗(X) is the dual

space.
(iii) The original norm topology on X(X∗) is always finer than the weak topol-

ogy w (weak-star topology w∗). The equality holds if and only if X is finite-
dimensional.



28 1 Fundamentals of Functional Analysis

Proof According to Corollary 1.53, the sets of seminorms which generate the
topologies w and w∗ are sufficient, that is, satisfy property (1.6). Hence, asser-
tion (i) holds. To obtain assertion (ii), we make use of Proposition 1.65(i), since the
elements of X∗(X) may be viewed as linear functionals on X(X∗). To prove asser-
tion (iii), we observe that the norm is weakly continuous if w coincides with the
norm topology on X. According to Proposition 1.65(v), there are x∗

1 , x∗
2 , . . . , x∗

n ∈
X∗ and k > 0 such that

‖x‖ ≤ k max
1≤i≤n

∣
∣x∗

i (x)
∣
∣, ∀x ∈ X.

Thus, we have

n⋂

i=1

kerx∗
i = {0} ⊂ kerx∗, ∀x∗ ∈ X∗,

which implies that x∗ is a linear combination of x∗
i , i = 1,2, . . . , n (cf. Theo-

rem 1.30), that is, X∗ is a finite-dimensional space. However, this holds if and only
if X is finite-dimensional. Similarly, if w∗ coincides with the norm topology of X∗,
it follows that X is finite-dimensional.

In the following, we prove certain properties of w which, in general, are not true
for w∗. �

Proposition 1.72 A linear functional of normed space X is continuous if and only
if it is weakly continuous, that is, (X,w)∗ = X∗.

Proof We apply Proposition 1.71(ii). �

Proposition 1.73 A convex set is closed if and only if it is weakly closed.

Proof Using Proposition 1.71(iii), it follows that any w-closed set is closed. On the
other hand, from Theorem 1.48 we find as a result that a closed convex set is an
intersection of closed half-spaces. However, it is clear that a closed half-space is
also w-closed (Proposition 1.72 and Theorem 1.2). �

Corollary 1.74 The closure of a convex set coincides with its weak closure.

Corollary 1.75 The closed unit ball of a normed space is weakly closed.

From these two results, we obtain the following useful statements.

Corollary 1.76 If xn
w−→ x0, then there exists a sequence of convex combinations

of {xn} which converges strongly to x0. Moreover, we have

‖x0‖ ≤ lim inf
n→∞ ‖xn‖. (1.59)
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Corollary 1.77 If a sequence is weakly convergent and norm fundamental, then it
is strongly convergent.

Remark 1.78 Weak topologies can be similarly defined in a separated locally convex
space (X, τ). It is obvious that w ≤ τ and τ is a compatible topology sequence,
and all nonmetric results are also true if they only depend on X∗. For instance,
Propositions 1.72, 1.73, and Corollary 1.74 hold in every locally convex space.

Now, we consider the special case of Hilbert spaces. In view of the Riesz Theo-
rem 1.9, a sequence {xn} in a Hilbert space X is weakly convergent to x0 ∈ X if and
only if

lim
n→∞〈xn, a〉 = 〈x0, a〉, (1.60)

for every a ∈ X. (See Proposition 1.65(iv).)

Proposition 1.79 If xn
w−→ x0, where {xn} is a sequence in a Hilbert space, and

‖xn‖ → ‖x0‖, then xn → x0.

Proof We use the identity

‖xn − x0‖2 = ‖xn‖2 + ‖x0‖2 − 2 Re〈xn, x0〉. �

Proposition 1.80 In a normed space X the bounded and weakly bounded sets are
the same. If X is a Banach space, then the bounded and weak-star bounded sets of
X∗ are the same.

Proof Let M ⊂ X be a weakly bounded set. Define fx : X∗ → R by fx(x
∗) =

x∗(x), x∗ ∈ X∗, for every x ∈ M . We observe that {fx; x ∈ M} is a pointwise
bounded family of continuous linear functionals on the Banach space X∗. Accord-
ing to the principle of uniform boundedness (see Theorem 1.5), it follows that this
family is uniformly bounded, that is, ‖fx‖ ≤ k, ∀x ∈ M , for some k > 0. By virtue
of relations (1.10) and (1.36), we obtain

‖fx‖ = sup
‖x∗‖≤1

fx(x
∗) = sup

‖x∗‖≤1
x∗(x) = ‖x‖.

Therefore, ‖x‖ ≤ k, ∀x ∈ M , which shows that M is bounded. On the other hand, it
is obvious that any bounded set is weakly bounded (see Proposition 1.71(iii)). The
second part of the assertion follows in a similar way.

In particular, Propositions 1.72, 1.73 and 1.80 show that, for the weak topology
and the norm topology, the continuity of the linear functionals, the boundedness of
the sets, and the closure of the convex sets are identical. �

Theorem 1.81 The closed unit ball of the dual of a normed space is weak-star
compact.
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Proof Let X be a normed space. In view of Corollary 1.70, we need only to prove
that the closed unit ball of X∗ is closed in Γ X . Let f0 : X → Γ be an adherent
point of S∗ = {x∗ ∈ X∗; ‖x∗‖ ≤ 1} in the product topology of Γ X . First, we prove
that f0 is linear. For ε > 0, x, y ∈ X and a ∈ Γ , we consider the neighborhood
V (f0) having the form (1.54) with F = {x, y, ax + y}. By hypothesis, there exists
x∗

0 ∈ V (f0)∩S∗, that is, |x∗
0 (x)−f0(x)| < ε, |x∗

0 (y)−f0(y)| < ε and |x∗
0 (ax+y)−

f0(ax + y)| < ε. From these relations, we obtain |f0(ax + y) − af0(x) − f0(y)| ≤
ε(2 + |a|), ∀ε > 0. Hence, f0 is a linear functional on X. Also, we have

∣
∣f0(x)

∣
∣ ≤ ∣

∣x∗
0 (x)

∣
∣ + ∣

∣x∗
0 (x) − f0(x)

∣
∣ ≤ ‖x‖ + ε, ∀ε > 0,

which implies ‖f0‖ ≤ 1; hence f0 ∈ S∗, that is, S∗ is closed in Γ X . �

Corollary 1.82 The closed unit ball of the dual of a normed space is weak-star
closed.

Corollary 1.83 If {x∗
n} ⊂ X∗ is weak-star convergent to x∗

0 ∈ X∗, then

‖x∗
0‖ ≤ lim inf

n→∞ ‖x∗
n‖. (1.61)

If, in addition, {x∗
n} is norm fundamental, it is strongly convergent to x∗

0 .

Now, we prove some properties of linear operators related to the duality theory.

Proposition 1.84 Any linear continuous operator is weakly continuous.

Proof Let T : X → Y be a linear continuous operator, where X,Y are two linear
normed spaces. It is clear that y∗ ◦T is a linear continuous functional on X for every
y∗ ∈ Y ∗. According to Proposition 1.72, y∗ ◦ T is a weakly continuous functional
and, therefore, T is weakly continuous (Proposition 1.65(v)).

Let T be a linear operator defined on a linear subspace D(T ) of X, with values
in Y . We observe that y∗ ◦ T is a linear functional on D(T ) for every y∗ ∈ Y ∗.
The problem is to find the conditions which should ensure that there exists a unique
element x∗ ∈ X∗ such that x∗|D(T ) = y∗ ◦ T . First, it is necessary that y∗ ◦ T is
bounded on D(T ). Moreover, y∗ ◦ T should admit a unique extension on the whole
space X, that is, D(T ) should be dense in X. Furthermore, the linear operator T

must be densely defined (D(T ) = X). In this case, we denote by D(T ∗) the set of
all elements y∗ ∈ Y ∗, which have the property that y∗ ◦ T is bounded on D(T ), that
is,

D(T ∗) = {
y∗ ∈ Y ; there is k > 0 such that (x, y∗ ◦ T ) ≤ k‖x‖,

for all x ∈ D(T )
}
. (1.62)

Thus, for every y∗ ∈ D(T ∗), there is a unique element x∗ ∈ X∗ such that
(x, x∗) = (x, y∗ ◦ T ) for any x ∈ D(T ).
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Define the operator T ∗ : D(T ∗) → X∗ by T ∗y∗ = x∗, called the adjoint of T .
In other words, T ∗ is well defined by the relation

(T x, y∗) = (x, T ∗y∗), ∀x ∈ D(T ) and y∗ ∈ D(T ∗). (1.63)

�

Proposition 1.85 The adjoint of a densely defined linear operator is a closed linear
operator.

Proof We recall that an operator is said to be closed if its graph is closed. Let T :
D(T ) ⊂ X → Y , D(T ) = X, be a linear operator and let

G(T ∗) = {
(y∗, T ∗y∗); y∗ ∈ D(T ∗)

} ⊂ Y ∗ × X∗ (1.64)

be the graph of T ∗. Clearly, T ∗ is linear. If (t∗0 , x∗
0 ) ∈ G(T ∗), then there exist {y∗

n} ⊂
D(T ∗) such that y∗

n → y∗
0 and T ∗y∗

n → x∗
0 . On the other hand, by relation (1.63)

we have (T x, y∗
n) = (x, T ∗y∗

n), ∀x ∈ D(T ). For n → ∞, we obtain (T x, y∗
0 ) =

(x, x∗
0 ); hence y∗

0 ∈ D(T ∗). Moreover, (T x, y∗
0 ) = (x, T ∗y∗

0 ), ∀x ∈ D(T ), that is,
x∗

0 = T ∗y∗
0 , because D(T ) = X. Therefore, (y∗

0 , x∗
0 ) = (y∗

0 , T ∗y∗
0 ) ∈ G(T ∗). Hence,

G(T ∗) is closed in Y ∗ × X∗, thus proving Proposition 1.85. �

Remark 1.86 If T ∈ L(X,Y ), that is, D(T ) = X and T is a continuous linear oper-
ator, then D(T ∗) = Y ∗ and T ∗ ∈ L(Y ∗,X∗). Also, T ∗∗|X = T .

In the special case of a Hilbert space, the adjoint T ∗ defined here differs from the
adjoint T ′ defined in Sect. 1.1.1. But one easily verifies that

T ′ = J−1
1 ◦ T ∗ ◦ J2, (1.65)

where J1 and J2 are canonical isomorphisms of the Hilbert spaces X and Y gener-
ated by (1.88). It should be observed that T ′ ∈ L(Y,X), while T ∗ ∈ L(Y ∗,X∗).

1.2.3 Reflexive Banach Spaces

It is clear that, for each x ∈ X, the functional fx : X → Γ , defined by

fx(x∗) = x∗(x), ∀x ∈ X, (1.66)

is linear, and the weak-star topology on X∗ is the coarsest topology on X∗ for which
fx is continuous for every x ∈ X. Also, we observe that fx is strongly continuous
on X∗ since

∣
∣fx(x

∗)
∣
∣ = ∣

∣x∗(x)
∣
∣ ≤ ‖x∗‖‖x‖, ∀x∗ ∈ X∗.
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Furthermore, fx is an element of the dual space of X∗, that is, fx ∈ X∗∗. The map-
ping Φ : X → X∗∗, defined by Φ(x) = fx , ∀x ∈ X, is a linear isometric injection
(cf. equality (1.36)). Hence, Φ is an imbedding of linear normed spaces, called the
natural imbedding of X into X∗∗.

Definition 1.87 A linear normed space is called reflexive if the natural imbedding
is surjective, that is, it can be identified under Φ with its bidual.

However, a linear normed space X is reflexive if and only if for every continuous
linear functional F on X∗ there is an element x ∈ X such that

F(x∗) = x∗(x), ∀x∗ ∈ X∗.

Proposition 1.88 A Hilbert space is reflexive.

Proof If J is a canonical isomorphism of the Hilbert space X defined by (1.17), that
is, (x, x∗) = 〈x,J−1x∗〉, x ∈ X, x∗ ∈ X∗, according to (1.17) and (1.18), we have

(x∗,Φx) = (x, x∗) = 〈
x,J−1x∗〉 = 〈x∗, J x〉 = (

x∗, J̃ J x
)
, ∀x ∈ X,

where J̃ is the canonical isomorphism of X∗. Therefore, Φ = J̃ J . Hence, Φ is onto
X∗∗, since J and J̃ are onto X∗ and X∗∗, respectively. �

Proposition 1.89 A linear normed space X is reflexive if and only if one of the
following three equivalent statements is satisfied:

(i) Each continuous linear functional on X∗ is weak-star continuous.
(ii) The norm topology on X∗ is compatible with the natural duality between X

and X∗.
(iii) Each closed convex set of X∗ is weak-star closed.

Proposition 1.90 A Banach space is reflexive if and only if its dual is reflexive.

Proof If X is reflexive, it is clear that X∗ is also reflexive. Conversely, let X∗ be
reflexive and suppose that X is not reflexive. Thus, by natural imbedding, X can be
considered as being a proper closed linear subspace of X∗∗ because X is complete.

According to Theorem 1.52, there is a nonidentically zero continuous linear func-
tional x′′′

0 ∈ X∗∗∗ which is null on X, that is,
(
fx, x′′′

0

) = 0, ∀x ∈ X.

On the other hand, since X∗ is reflexive, there is x ′
0 ∈ X∗ such that

(
x′′, x ′′′

0

) = (
x ′

0, x
′′), ∀x ′′ ∈ X∗∗.

From the latter two relations, we obtain (x ′
0, fx) = 0, that is, (x, x′

0) = 0, ∀x ∈ X.
Hence, x ′

0 is the trivial functional on X. By natural imbedding, it follows that x′′′
0



1.2 Duality in Linear Normed Spaces 33

is also the null element of X∗∗∗. The contradiction we arrived at concludes the
proof. �

The condition that X is a Banach space cannot be dropped in Proposition 1.90.
This condition is quite natural because a reflexive normed space is always complete.

Theorem 1.91 The closed unit ball of a linear normed space is dense in the
closed unit ball of the bidual in the weak-star topology σ(X∗∗,X∗) (under natu-
ral imbedding).

Proof For simplicity, we suppose that X is a real linear normed space. Denote S =
{x ∈ X; ‖x‖ ≤ 1} and S∗∗ = {x′′ ∈ X∗∗; ‖x′′‖ ≤ 1}. It is clear that Φ(S) ⊂ S∗∗.
From Theorem 1.81 (for X∗), it follows that S∗∗ is a σ(X∗∗,X∗)-compact set; hence
it is a σ(X∗∗,X∗)-closed set. Let Φ̃(S) be the closure of Φ(S) with respect to the
topology σ(X∗∗,X∗), hence Φ̃(S) ⊂ S∗∗. Suppose that there is an element x′′

0 ∈
S∗∗ \ Φ̃(S). By Corollary 1.45, we find a σ(X∗∗,X∗)-continuous linear functional
on X∗∗, that is, an element x ′

0 ∈ X∗ (cf. Proposition 1.71(ii)) such that

sup
{
x′′(x′

0

); x′′ ∈ Φ̃(S)
}

< x′′
0

(
x′

0

)
,

which implies

sup
{
x′

0(x); x ∈ S
}

< x′′
0

(
x′

0

) ≤ ∥
∥x′′

0

∥
∥

∥
∥x′

0

∥
∥ ≤ ∥

∥x′
0

∥
∥.

This contradicts the norm definition of x ′
0, given by relation (1.55); hence Φ̃(S) =

X∗∗. �

Corollary 1.92 Each linear normed space X is σ(X∗∗,X∗)-dense in its bidual. In
particular, X is reflexive if and only if it is σ(X∗∗,X∗)-closed (equivalently, if and
only if the closed unit ball is weak-star closed in its bidual).

Remark 1.93 The topology σ(X∗∗,X∗) is the weak-star topology of the bidual, and
it coincides with the weak topology σ(X∗∗,X∗∗∗) of the bidual if and only if X∗ is
reflexive.

Theorem 1.94 A linear normed space is reflexive if and only if its closed unit ball
is weakly compact.

Proof From Theorem 1.81 it follows that S∗∗ is σ(X∗∗,X∗)-compact. If X is refle-
xive, Φ(S) is σ(X∗∗,X∗)-compact since Φ(S) = S∗∗, that is, S is weakly compact.
Conversely, let X be a normed space with its unit closed ball weakly compact. Since,
by natural imbedding, the relativization of the topology σ(X∗∗,X∗) with respect
to X is σ(X,X∗), it follows that Φ(S) is also σ(X∗∗,X∗)-closed. According to
Theorem 1.91, we obtain S∗∗ = Φ(S) and, therefore, X is reflexive. �
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Corollary 1.95 A linear normed space is reflexive if and only if each bounded sub-
set is a relatively weakly compact set.

We observe that weak compactness may be replaced by weak-sequential com-
pactness or even by weak-countable compactness (see, for instance, [9, 16]). Thus,
we obtain the well-known Eberlein Theorem.

Theorem 1.96 (Eberlein) A linear normed space is reflexive if and only if its closed
unit ball is sequentially weakly compact.

Corollary 1.97 A linear normed space is reflexive if and only if each bounded se-
quence contains a weakly convergent subsequence or, equivalently, if and only if
each bounded set is a weakly sequentially relatively compact set.

Corollary 1.98 A linear normed space is reflexive if and only if each separable and
closed subspace is reflexive.

1.2.4 Duality Mapping

Let X be a real linear normed space and let X∗ be its dual.

Definition 1.99 The operator F : X → P(X∗) defined by

Fx = {
x∗ ∈ X∗; (x, x∗) = ‖x‖2 = ‖x∗‖2} (1.67)

is called the duality mapping of X.

If X is a real Hilbert space, it is clear that the duality mapping is even the cano-
nical isomorphism given by the Riesz Theorem.

From Corollary 1.53, it follows that Fx �= ∅, ∀x ∈ X, hence F is well defined.
Also, it is clear that Fx is a convex set of X∗ for every x ∈ X. Moreover, Fx is
bounded and w∗-closed, thus it is w∗-compact (cf. Corollary 1.70).

According to relation (1.67), we observe that x∗ ∈ Fx, with x∗ �= 0, if and only
if the element x maximizes x∗ on the closed ball S(0,‖x‖), or equivalently if and
only if x∗(u) = ‖x‖2, u ∈ X, is the equation of a closed supporting hyperplane
to S(0,‖x‖). This condition can be translated to the closed unit ball S(0,1) by
replacing x by x‖x‖−1. Thus, it is natural to consider the linear normed spaces
which have the following property: at most one closed support hyperplane passes
through every boundary point of the closed unit ball. A linear normed space which
has this property is called smooth.

However, from Theorem 1.38 there exists a closed supporting hyperplane
through each boundary point of the closed unit ball. Consequently, a linear normed
space is smooth if and only if there is exactly one supporting hyperplane through
each boundary point of the closed unit ball. Thus, a supporting hyperplane is at the
same time a tangent hyperplane.
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Remark 1.100 It is clear that the duality mapping is single-valued if and only if the
normed space is smooth.

A property which is the dual of that given above is the following. Any noniden-
tically zero continuous linear functional takes a maximum value on the closed unit
ball at most at one point. If a linear normed space enjoys this property, it is called a
strictly convex space. In terms of supporting hyperplanes, this property may be ex-
pressed as: distinct boundary points of the closed unit ball have distinct supporting
hyperplanes.

Theorem 1.101 If X∗ is smooth (strictly convex), then X is strictly convex
(smooth).

Proof Let Σ and Σ∗ be the boundaries of the closed unit balls of X and X∗. If
X is not strictly convex there exist x∗

0 ∈ Σ∗ and x1, x2 ∈ Σ , with x1 �= x2, such
that (x1, x

∗
0 ) = (x2, x

∗
0 ) = 1. Thus, two distinct supporting hyperplanes pass through

x∗
0 ∈ Σ∗ : (x1, u

∗) = 1, (x2, u
∗) = 1, u∗ ∈ X∗. Therefore, X∗ is not smooth. If X is

not smooth, there exist x0 ∈ Σ and x∗
1 , x∗

2 ∈ Σ∗, with x∗
1 �= x∗

2 , such that x∗
1 (x0) =

x∗
2 (x0) = 1; that is, x0 determines a continuous linear functional on X∗ which takes

the maximum value on the closed unit ball of X in two distinct points x∗
1 , x∗

2 . Hence,
X∗ is not strictly convex. �

Complete duality clearly holds in the reflexive case, namely, we have the fol-
lowing.

Corollary 1.102 A reflexive normed space is smooth (strictly convex) if and only if
its dual is strictly convex (smooth).

Proposition 1.103 A linear normed space is strictly convex if and only if one of the
following equivalent properties holds:

(i) If ‖x + y‖ = ‖x‖ + ‖y‖ and x �= 0, there is t ≥ 0 such that y = tx.
(ii) If ‖x‖ = ‖y‖ = 1 and x �= y, then ‖λx + (1 − λ)y‖ < 1 for all λ ∈ ]0,1[.

(iii) If ‖x‖ = ‖y‖ = 1 and x �= y, then ‖ 1
2 (x + y)‖ < 1.

(iv) The function x → ‖x‖2, x ∈ X, is strictly convex.

Proof Let X be strictly convex and let x, y ∈ X \ {0} be such that ‖x + y‖ = ‖x‖ +
‖y‖. From Corollary 1.53 there exists x∗ such that (x +y, x∗) = ‖x +y‖, ‖x∗‖ = 1.
Since (x, x∗) ≤ ‖x‖, (y, x∗) ≤ ‖y‖, we must have (x, x∗) = ‖x‖ and (y, x∗) = ‖y‖,
that is, ( x

‖x‖ , x∗) = (
y

‖y‖ , x∗) = 1. Because X is strictly convex, it follows that x
‖x‖ =

y
‖y‖ , hence property (i) holds with t = ‖y‖

‖x‖ .
To prove that (i)→(ii), we assume by contradiction that there exists x �= y such

that ‖x‖ = ‖y‖ = 1 and ‖λx + (1 − λ)y‖ = 1, where λ ∈ ]0,1[. Therefore, we have
‖λx + (1 −λ)y‖ = ‖λx‖+‖(1 −λ)y‖. According to property (i), there exists t ≥ 0
such that λx = t (1 − λ)y. Since ‖x‖ = ‖y‖, we obtain λ = t (1 − λ) and so x = y,
which is a contradiction.
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The implications (ii)→(iii) and (iv)→(ii) are obvious.
Now, we assume that X is not strictly convex. Therefore, there exist x∗

0 ∈ X∗
and x1, x2 ∈ X with ‖x∗

0‖ = 1, ‖x1‖ = ‖x2‖ = 1, x1 �= x2, such that (x1, x
∗
0 ) =

(x2, x
∗
0 ) = 1, hence ( 1

2 (x1 + x2), x
∗
0 ) = 1. Thus,

∥
∥
∥
∥

1

2
(x1 + x2)

∥
∥
∥
∥ = sup

‖x∗‖≤1

(
1

2
(x1 + x2), x

∗
)

≥
(

1

2
(x1 + x2), x

∗
0

)

= 1,

contradicting property (iii). Hence, property (iii) implies the strict convexity of X.
Now, from the equality

λ‖x‖2 + (1 − λ)‖y‖2 = (
λ‖x‖ + (1 − λ)‖y‖)2 + λ(1 − λ)

(‖x‖ − ‖y‖)2
,

it follows that

∥
∥λx + (1 − λ)y

∥
∥2 ≤ (

λ‖x‖ + (1 − λ)‖y‖)2
< λ‖x‖2 + (1 − λ)‖y‖2,

for all x, y ∈ X with ‖x‖ �= ‖y‖ and λ ∈ ]0,1[. If ‖x‖ = ‖y‖, we obtain the
strict convexity of the function x → ‖x‖2, x ∈ X, from (ii). Thus, the implication
(ii)→(iv) is established and the proof is complete. �

Corollary 1.104 A normed space is strictly convex if and only if each two-
dimensional linear subspace is strictly convex.

This problem which arises naturally is whether equivalent norms exist which are
simultaneously strictly convex and smooth. A remarkable result of this type is the
renorming theorem due to Asplund [1, 2], which will be frequently used in the fol-
lowing work.

Theorem 1.105 (Asplund) Let X be a reflexive Banach space. Then there exists an
equivalent norm on X, such that, under this new norm, X and X∗ are strictly convex,
that is, X and X∗ are simultaneously smooth and strictly convex.

The proof is omitted since it involves some special considerations. In the fol-
lowing, other special properties of the duality mapping will be examined.

Theorem 1.106 If X is smooth, then the duality mapping is continuous from X with
strong topology into X∗ with weak-star topology, that is, F is demicontinuous.

Proof It is clear that, under our hypothesis, the duality mapping is single-valued
(see Remark 1.100).

Let {xn} be any sequence of X convergent to x0 ∈ X. The sequence {Fxn} is
bounded in X∗ and hence, using Theorem 1.81, it has a w∗-adherent point x∗

0 and
‖x∗

0‖ ≤ ‖x0‖. Thus, for every ε > 0 and n ∈ N, there exists kn ∈ N with kn ≥ n, such
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that |(x∗
0 − Fxn, x0)| < ε. But we have

∣
∣(x∗

0 , x0) − ‖xkn‖2
∣
∣ = ∣

∣(x∗
0 , x0) − (Fxkn, xkn)

∣
∣

≤ ∣
∣(x∗

0 − Fxkn, x0)
∣
∣ + ∣

∣(Fxkn, xkn − x0)
∣
∣

< ε + ‖Fxkn‖‖xkn − x0‖,
from which, for n → ∞, we obtain (x∗

0 , x0) = ‖x0‖2. This also implies ‖x0‖ ≤
‖x∗

0‖. Hence, ‖x∗
0‖ = ‖x0‖, that is, x∗

0 = Fx0. Thus, the sequence {Fxn}, which
clearly is w∗-compact, has a unique w∗-adherent point x∗

0 . Therefore, {Fxn} is w∗-
convergent to Fx0, as claimed. �

A stronger property than strict convexity is uniform convexity.

Definition 1.107 A linear normed space is called uniformly convex if, for each ε ∈
]0,2[, there exists a δ(ε) > 0, for which ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε imply

∥
∥
∥
∥

1

2
(x + y)

∥
∥
∥
∥ ≤ 1 − δ(ε). (1.68)

A function ε → δ(ε), ∀ε ∈ ]0,2[, with the above property is called a modulus of
convexity of X.

The following characterization is obvious.

Proposition 1.108 A linear normed space X is uniformly convex if and only
if limn→∞ ‖xn − yn‖ = 0 whenever ‖xn‖ ≤ 1, ‖yn‖ ≤ 1 and limn→∞ ‖ 1

2 (xn +
yn)‖ = 1.

As examples of uniformly convex spaces, we have the Hilbert spaces and the
Banach spaces Lp[a, b], �p for p ∈ ]1,∞[ (see, for instance, [19]).

In the next section, we show that the property of weak convergence established
for Hilbert spaces in Proposition 1.79 can also be extended to uniformly convex
spaces.

Theorem 1.109 If xn
w−→ x0, where {xn} is a sequence in a uniformly convex space,

and ‖xn‖ → ‖x0‖, then xn → x0.

Proof If x0 = 0, the statement is obvious. Suppose x0 �= 0; we can consider
‖xn‖ > 0 for all n ∈ N. Let us put x ′

n = ‖xn‖−1xn, n ∈ N, x′
0 = ‖x0‖−1x0 and so

‖x ′
n‖ = ‖x′

0‖ = 1. Since {x′
n + x′

0}n∈N converges weakly to 2x ′
0, from the second

part of Corollary 1.76 we have

2 = ∥
∥2x ′

0

∥
∥ ≤ lim inf

n→∞
∥
∥x′

n + x ′
0

∥
∥ ≤ lim sup

n→∞
∥
∥x′

n + x ′
0

∥
∥ ≤ ∥

∥x ′
0

∥
∥ + lim

n→∞
∥
∥x′

n

∥
∥ = 2.
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By virtue of Proposition 1.108, we obtain

lim
n→∞

∥
∥x′

n − x′
0

∥
∥ = 0,

that is, {xn} converges in the norm to x0. �

Remark 1.110 The above statement is also true for the nets, so we find that in a
uniformly convex space the weak and the strong (norm) topologies coincide on the
boundary of a closed ball.

Theorem 1.111 Every uniformly convex Banach space is reflexive.

Proof Let x∗∗ be an arbitrary element of X∗∗ such that ‖x∗∗‖ = 1. According
to Theorem 1.91, there exists a net {xi}i∈I ⊂ S(0,1), σ(X∗∗,X∗)-convergent to
x∗∗. Since the net { 1

2 (xi + xj )}(i,j)∈I×I is also σ(X∗∗,X∗)-convergent to x∗∗, and
‖x∗∗‖ = 1, applying Corollary 1.83, we have

1 ≤ lim inf
i,j∈I

∥
∥
∥
∥

1

2
(xi + xj )

∥
∥
∥
∥ ≤ lim sup

i,j∈I

∥
∥
∥
∥

1

2
(xi + xj )

∥
∥
∥
∥ ≤ 1

2
lim sup

i,j∈I

(‖xi‖ + ‖xj‖
) ≤ 1,

which says that

lim
i,j∈I

∥
∥
∥
∥

1

2
(xi + xj )

∥
∥
∥
∥ = 1.

According to the uniform convexity, it follows that {xi} is a Cauchy net. Thus, {xi}
converges to an element x ∈ X. Therefore, x∗∗ = x ∈ X and the proof is complete. �

The notion dual to uniform convexity is the notion of uniform smoothness.

Definition 1.112 A normed linear space is said to be uniformly smooth if for each
ε > 0 there exists an η(ε) > 0 for which

‖x‖ = 1 and ‖y‖ ≤ η(ε) always implies ‖x + y‖ + ‖x − y‖ < 2 + ε‖y‖.
(1.69)

Proposition 1.113 A linear normed space X is uniformly smooth if and only if for
each ε > 0 there exists an η′(ε) > 0 such that

‖x‖ ≥ 1, ‖y‖ ≥ 1 and ‖x − y‖ ≤ η′(ε)

imply ‖x + y‖ ≥ ‖x‖ + ‖y‖ − ε‖x − y‖. (1.70)

Proof If X is uniformly smooth, it is easy to establish property (1.70) for η′(ε) =
2η(2ε)(1 + η(2ε))−1, ε > 0.

Conversely, taking η(ε) = η′( ε
2 )(2 + η′( ε

2))−1, ε > 0, property (1.69) follows
from (1.70). �
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Theorem 1.114 A Banach space X is uniformly convex (smooth) if and only if its
dual space X∗ is uniformly smooth (convex).

Proof Let us assume that X is a uniformly convex Banach space. We claim that
(1.69) is verified for X∗ with η(ε) < δ(ε)(2 − δ(ε))−1, where δ is a modulus of
convexity of X. Indeed, if x∗, y∗ ∈ X∗ and ‖x∗‖ = 1, ‖y∗‖ ≤ η(ε), since X is re-
flexive (Theorem 1.111), there exist x, y ∈ X with ‖x‖ = 1, ‖y‖ = 1, such that
(x∗ + y∗, x) = ‖x∗ + y∗‖ and (x∗ − y∗, y) = ‖x∗ − y∗‖.

Thus, we have

‖x∗ + y∗‖ + ‖x∗ − y∗‖ = (x∗, x + y) + (y∗, x − y)

≤ ‖x + y‖ + ‖x − y‖‖y∗‖ ≤ 2 + ‖x − y‖‖y∗‖. (1.71)

On the other hand, we have

1

2
‖x + y‖ ≥ 1

2
(x∗ + y∗, x + y)

(
1 + η(ε)

)−1

≥ 1

2

[
(x∗ + y∗, x) + (x∗ − y∗, y) + 2(y∗, y)

](
1 + η(ε)

)−1

≥ 1

2

[‖x∗ + y∗‖ + ‖x∗ − y∗‖ − 2η(ε)
](

1 + η(ε)
)−1

≥ 1

2

[‖x∗ + y∗ + x∗ − y∗‖ − 2η(ε)
](

1 + η(ε)
)−1

>
(
1 − η(ε)

)(
1 + η(ε)

)−1
> 1 − δ(ε),

from which, according to property (1.68), we obtain ‖x − y‖ < ε. Therefore, using
(1.71), (1.69) follows for X∗, that is, X∗ is uniformly smooth.

Now, let us assume that X is uniformly smooth. To prove that X∗ is uniformly
convex, we establish property (1.68) with δ(ε) = ε

12 η(ε
2 ). For ‖x∗‖ ≤ 1, ‖y∗‖ ≤ 1,

‖x∗ − y∗‖ ≥ ε, there exists xε ∈ X with ‖xε‖ = η( ε
2 ), such that

(x∗ − y∗, xε) >
2ε

3
η

(
ε

2

)

.

If ‖x‖ = 1, we have

(x, x∗ + y∗) = (x + xε, x
∗) + (x − xε, y

∗) − (xε, x
∗ − y∗)

≤ ‖x + xε‖ + ‖x − xε‖ − 2ε

3
η

(
ε

2

)

< 2 + ε

2
‖xε‖ − 2ε

3
η

(
ε

2

)

= 2 − ε

6
η

(
ε

2

)

and therefore ‖x∗ + y∗‖ < 2(1 − δ(ε)), that is, X∗ is uniformly convex. By virtue
of Proposition 1.90, Theorem 1.111, the proof is complete. �
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Corollary 1.115 A uniformly smooth Banach space is reflexive.

A renorming result analogous to Theorem 1.105 can be stated as follows.
If a Banach space X is endowed with two equivalent norms ‖ · ‖1, ‖ · ‖2, such

that (X,‖ · ‖1) is uniformly convex and (X,‖ · ‖2) is uniformly smooth, then there
exists a third equivalent norm ‖ · ‖3 which is both uniformly convex and uniformly
smooth.

A detailed study of the uniform convexifiability problem was given by James [17]
(see also Diestel [9] and van Dulst [29]). For the special properties of duality and
convexity in Banach spaces we refer the reader to the books of Day [7], Köthe [19]
and Holmes [16].

Theorem 1.116 If X is uniformly smooth, then the duality mapping is uniformly
continuous on every bounded set M of X.

Proof First, we remark that the duality mapping is single-valued (see Remark 1.100).
Without any loss of generality, we may consider M = {x ∈ X; ‖x‖ = 1}. Let
x, y ∈ M , ‖x − y‖ < 2δ(ε), where δ is a modulus of convexity of X∗. We have

‖Fx + Fy‖ ≥ (x,Fx + Fy) = (x,Fx) + (y,Fy) + (x − y,Fy)

≥ ‖x‖2 + ‖y‖2 − ‖x − y‖‖Fy‖ > 2
(
1 − δ(ε)

)
.

Therefore, using property (1.68) for X∗, we obtain ‖Fx − Fy‖ < ε, that is, the
duality mapping is uniformly continuous on M .

Finally, we describe some basic properties of the duality mapping. �

Proposition 1.117 The duality mapping of a real Banach space X has the following
properties:

(i) It is homogeneous
(ii) It is additive if and only if X is a Hilbert space

(iii) It is single-valued if and only if X is smooth
(iv) It is surjective if and only if X is reflexive
(v) It is injective or strictly monotone if and only if X is strictly convex

(vi) It is single-valued and uniformly continuous if and only if X(X∗) is uniformly
smooth (convex).

Remark 1.118 The duality mapping can be replaced in property (vi) by one of its
selections.

1.3 Vector-Valued Functions and Distributions

This section presents the notation, definitions and other necessary background in-
formation on vector-valued functions required for the following treatment. Most of
the terminology and basic results used here are well known and will be used without
further comment.
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1.3.1 The Bochner Integral

Let X be a real (or complex) Banach space and let [a, b] be a real (closed) interval.
A vector-valued function x, defined on [a, b] with values in X, is said to be finitely
valued if it is a constant vector �= 0 on each of a finite number of disjoint measurable
sets Ak ⊂ [a, b] and equal to 0 on [a, b] \ ⋃

k Ak . The function x is said to be
strongly measurable on [a, b] if there is a sequence {xn} of finite-valued functions
which converges strongly almost everywhere on [a, b] to x.

A function x on [a, b] to X is said to be Bochner integrable if there exists a
sequence {xn} of a finitely valued function on [a, b] to X, which converges strongly
almost everywhere to x in such a way that

lim
n→∞

∫ b

a

∥
∥x(t) − xn(t)

∥
∥dt = 0.

A necessary and sufficient condition that x on [a, b] to X is Bochner integrable
is that x is strongly measurable and that

∫ b

a
‖x(t)‖dt < +∞. More generally, the

space of all (classes of) strongly measurable functions x on [a, b] to X, such that∫ b

a
‖x(t)‖p dt < +∞, for 1 ≤ p < ∞, and ess supt∈[a,b] ‖x(t)‖ < +∞, p = ∞, is a

Banach space Lp(a, b;X) with the norm

‖x‖p =
(∫ b

a

∥
∥x(t)

∥
∥p dt

) 1
p

, 1 ≤ p < ∞, (1.72)

with the usual modification in the case p = ∞.
If X is reflexive and 1 ≤ p < ∞, the dual of Lp(a, b;X) is Lq(a, b;X∗), where

1
p

+ 1
q

= 1. More precisely, we have the following theorem.

Theorem 1.119 Let X be a reflexive Banach space. Then to every f ∈ (Lp(a, b;
X))∗ there corresponds a unique element yf ∈ Lq(a, b;X∗), 1 ≤ p < +∞, 1

p
+

1
q

= 1, such that

〈x,f 〉 =
∫ b

a

(
x(t), yf (t)

)
dt, x ∈ Lp(a, b;X) (1.73)

and ‖f ‖ = ‖yf ‖q .
Conversely, any y ∈ Lq(a, b;X∗) defines a functional fy ∈ (Lp(a, b;X))∗ such

that ‖fy‖ = ‖y‖q and

〈x,fy〉 =
∫ b

a

(
x(t), y(t)

)
dt, ∀x ∈ Lp(a, b;X). (1.74)

Remark 1.120 In the special case 1 < p < +∞, Theorem 1.119 is due to Philips
and we refer the reader to Edward’s book [12] for the proof. It should be noticed
that in this case Theorem 1.119 remains true if X∗ is separable.
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The classical result of Dunford and Pettis asserts that a subset A of L1(Ω),
where Ω ⊂ R

n, is weakly sequentially compact if and only if it is bounded and the
integrals

∫
udt are uniformly absolutely continuous. This criterion still applies in

the space L1(a, b;X) as shown in the next theorem.

Theorem 1.121 Let X be a reflexive Banach space or a separable dual space. In or-
der for a subset A ⊂ L1(a, b;X) to be weakly sequentially compact, it is necessary
and sufficient that the following two conditions be fulfilled:

(a)

sup

{∫ b

a

∥
∥x(t)

∥
∥dt; x ∈ A

}

< +∞.

(b) Given ε > 0, there exists a number δ(ε) > 0, such that
∫

E

∥
∥x(t)

∥
∥dt ≤ ε, ∀x ∈ A , (1.75)

provided that E ⊂ [a, b] is measurable and Lebesgue measure μ(E) of E is
≤ δ(ε).

For the proof, see Brooks and Dinculeanu [5].
We denote by L

p

loc(R
+;X) the space of all strongly measurable functions

x :R+ → X such that x ∈ Lp(0, T ;X) for all T > 0.

1.3.2 Bounded Variation Vector Functions

If X is a Banach space with norm ‖ · ‖ and x : [a, b] → X is a given function on
[a, b], then the total variation of x is defined by

Var
(
x; [a, b]) = sup

n∑

i=1

∥
∥x(ti−1) − x(ti)

∥
∥, (1.76)

where the supremum is taken over all partitions Δ = {a = t0 < t1 < · · · < tn = b} of
[a, b]. If Var(x; [a, b]) < +∞, then the function x is said to be of bounded variation
over [a, b]. We denote by BV([a, b];X) the space of all such functions.

Proposition 1.122 Let x : [a, b] → X be a function of bounded variation. Then x

is bounded and strongly measurable over [a, b] and x(t ± 0) exists at all t ∈ [a, b[
and t ∈ ]a, b], respectively. Moreover, x is continuous apart from a countable set of
points and the following inequality holds:

∫ b−h

a

∥
∥x(t + h) − x(t)

∥
∥dt ≤ hVar

(
x; [a, b]), (1.77)

for all positive h such that a ≤ b − h.
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Proof Let Vx(·) be the real-valued function defined by

Vx(t) = Var
(
x; [a, t]), a ≤ t ≤ b.

Observe that t → Vx(t) is nondecreasing on [a, b] and

∥
∥x(t1) − x(t2)

∥
∥ ≤ Vx(t2) − Vx(t1), a ≤ t1 ≤ t2 ≤ b. (1.78)

In particular, this implies that

x(t0 + 0) = lim
t→t0
t>t0

x(t)

and

x(t0 − 0) = lim
t→t0
t<t0

x(t)

exist at every a ≤ t0 < b (respectively, at every a < t0 ≤ b). The same inequality
shows that x(t0 −0) = x(t0) = x(t0 +0) apart from a countable set of discontinuities
t0. Thus, x is measurable over [a, b]. The remaining part of Proposition 1.122 is a
straightforward consequence of inequality (1.78). �

Contrary to the case of numerical functions, the X-valued function of bounded
variation does not necessarily need to be almost everywhere differentiable. How-
ever, if the space X is reflexive, we have the following theorem, due to Y. Komura
(see, e.g., Barbu [3]).

Theorem 1.123 Let X be a reflexive Banach space and let x ∈ BV([a, b];X). Then

(
ẋ(t), x∗) = lim

h→0

(
x(t + h) − x(t)

h
, x∗

)

for all x∗ ∈ X∗ (1.79)

exists, a.e. on ]a, b[. Moreover, ẋ ∈ L1(a, b;X) and

∫ b

a

∥
∥ẋ(t)

∥
∥dt ≤ Var

(
x; [a, b]). (1.80)

An X-valued function x defined over [a, b] is said to be absolutely continuous
on [a, b] if, for each ε > 0, there exists δ(ε) > 0, such that

N∑

n=1

∥
∥x(tn) − x(sn)

∥
∥ ≤ ε whenever

N∑

n=1

|tn − sn| ≤ δ(ε) and

]tn, sn[ ∩ ]tm, sm[ = ∅ for m �= n.

(1.81)
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Theorem 1.124 Let X be a reflexive Banach space. Then every X-valued abso-
lutely continuous function x over [a, b] is a.e. differentiable on [a, b] and can be
represented as

x(t) = x(a) +
∫ t

a

(
dx

ds

)

(s)ds, a ≤ t ≤ b, (1.82)

where dx
ds

∈ L1(a, b;X) is the strong derivative of x.

Proof Using Theorem 1.123, the weak derivative ẋ of x exists and belongs to
L1(a, b;X). Let x̃ : [a, b] → X be defined by

x̃(t) = x(a) +
∫ t

a

ẋ(s)ds for t ∈ [a, b].

Obviously, (x̃(t), x∗) = (x(t), x∗) for all t ∈ [a, b] and all x∗ in X∗. Hence, x̃ = x.
On the other hand, x̃ is almost everywhere strongly differentiable on ]a, b[ and
( dx̃

dt
)(t) = ẋ(t), a.e. on ]a, b[ because ẋ ∈ L1(a, b;X). This completes the proof. �

Basic properties concerning the theory of real functions and vector measures can
be found in the books of Dinculeanu [11], Edwards [12] and Precupanu [25].

1.3.3 Vector Measures and Distributions on Real Intervals

Let I be an interval of real axis and let X be a Banach space with the norm ‖ · ‖. Let
K (I ) be the space of all continuous scalar (real or complex) functions on I with
compact supports in I . Given a compact subset K of I , we denote by KK(I) the
linear subspace of K (I ) consisting of all continuous functions with support in K ;
the space KK(I) is a Banach space with the norm |||ϕ||| = sup{|ϕ(x)|;x ∈ K}. By
definition, a measure (Radon measure) μ on I with values in X is a linear operator
from K (I ) to X whose restrictions to every KK(I) are continuous. In other words,
the linear operator μ : K (I ) → X is a measure on I if and only if to each compact
subset K of I there corresponds a number mK > 0 such that

∥
∥μ(ϕ)

∥
∥ ≤ mk|||ϕ|||, ∀ϕ ∈ KK(I). (1.83)

If the constant mK which occurs in (1.83) can be chosen independent of K , then
the measure μ is said to be a bounded measure on I . The measure μ : K (I ) → X

is said to be majorized if there exists a scalar positive measure ν : K (I ) → R such
that

∥
∥μ(ϕ)

∥
∥ ≤ ν

(|ϕ|), ∀ϕ ∈ K (I ).

If μ is a majorized measure, then there exists a smallest measure ν : K (I ) → R
+

which majorizes μ. This positive scalar measure is called the absolute value of μ

and will be denoted by |μ|.
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If I is an open interval of real axis, then we denote by D(I ) the space of all
infinitely differentiable real-valued functions on I with compact support in I . The
space D(I ) is topologized as a strict inductive limit of DK(I) where K ranges over
all compact subsets of I and DK(I) = {ϕ ∈ D(I ); supportϕ ⊂ K}. We denote by
D ′(I ;X) the space of all linear continuous operators from D(I ) to X. An element
u ∈ D ′(I ;X) is called an X-valued distribution on I . If u ∈ D ′(I ;X) and j is a
positive integer, then the relation

u(j)(ϕ) = (−1)ju
(
ϕ(j)

)
, ∀ϕ ∈ D(I ) (1.84)

defines another distribution u(j) called the derivative of order j of u.
Now, let I be an arbitrary interval of the real axis and let w : I → X be a function

which is of bounded variation on every compact subinterval of I . We associate to w

the scalar-valued function Vw : I → R
+ defined by

Vw(t) − Vw(s) = Var
(
w; [s, t]) for s, t ∈ I.

It is well known that w defines an X-valued measure on I (the Lebesgue–Stieltjes
measure associated with w). In the sequel, we briefly recall the construction of this
measure.

Let d : t0 < t1 < · · · < tn be a finite partition of the interval I . We say that parti-
tion d ′ is finer than d and we write this as d ≤ d ′ if every point of d is a point of d ′.
The family P of all finite partitions d of I is a directed set with this order relation.
For every ϕ ∈ K (I ) and d ∈ P , consider the Riemann–Stieltjes sum

S(d,ϕ) =
n∑

i=1

ϕ(ti)
(
w(ti) − w(ti−1)

)
.

It turns out that there exists the limit of S(d,ϕ) through the directed set P , which
will be denoted by

∫
ϕ dw (the Riemann–Stieltjes integral of ϕ with respect to w).

If [a, b] is a compact interval of I containing the support of ϕ, we have
∥
∥
∥
∥

∫
ϕ dw

∥
∥
∥
∥ ≤ |||ϕ|||Var

(
w; [a, b]). (1.85)

Hence, the map ϕ → ∫
ϕ dw is a measure on I . Furthermore, it follows by (1.85)

that the measure ϕ → ∫
ϕ dw, which we simply denote by dw, is majorizable on I

and, therefore, its absolute value d|w| exists. More precisely, one has
∥
∥
∥
∥

∫
ϕ dw

∥
∥
∥
∥ ≤

∫
ϕ dVw, ∀ϕ ∈ K (I ), ϕ ≥ 0.

As a matter of fact, the integral
∫

ϕ dw can be defined by the formula

(∫
ϕ dw,x∗

)

=
∫

ϕ d(w,x∗), ∀x∗ ∈ X∗,
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where
∫

ϕ d(w,x∗) is the classical Riemann–Stieltjes integral. In particular, the
above inequality shows that every scalar valued dVw integrable function f on I

is integrable with respect to dw and
∥
∥
∥
∥

∫
f dw

∥
∥
∥
∥ ≤

∫
|f |dVw.

If I ′ is a subinterval of I , then, by definition, the dw-measure of I ′ is

dw(I ′) =
∫

χI ′ dw,

where χI ′ is the characteristic function of I ′. A little calculation reveals that

dw
([a, b]) = w(b + 0) − w(a − 0),

dw
([a, b[) = w(b − 0) − w(a − 0),

dw
(]a, b]) = w(b + 0) − w(a + 0),

dw
(]a, b[) = w(b − 0) − w(a + 0),

(1.86)

where a ≤ b. Here, we used the usual convention w(a − 0) = w(a) if I is of the
form [a, t2], and w(b + 0) = w(b) if I is of the form [t1, b].

If f ∈ C([a, b]), we denote by
∫
[a,b] f dw the integral

∫
f χ[a,b] dw, and by

∫ b

a
f dw the Riemann–Stieltjes integral on [a, b]. We have

∫

[a,b]
f dw −

∫ b

a

f dw = f (b)
(
w(b + 0) − w(b)

) − f (a)
(
w(a − 0) − w(a)

)
.

Moreover, if f : I → R is a continuously differentiable function on I , then, for
every interval [a, b] ∈ I , one has the following formula for integrating by parts:

∫

[a,b]
f dw +

∫

[a,b]
f ′w dt = w(b + 0)f (b) − w(a − 0)f (a), (1.87)

where dt is the Lebesgue measure on R.
In particular, we see by (1.87) that the measure dw on ]a, b[ is just the derivative

w′ of w in the sense of X-valued distributions on ]a, b[.
Let us now assume that the space X is reflexive. Then, by Theorem 1.123, the

function w is a.e. weakly differentiable on [a, b] and we may write

w(t) =
∫ t

a

ẇ(s)ds + ws(t), a ≤ t ≤ b, (1.88)

where ẇ ∈ L1(a, b;X) is the weak derivative of w. The function ws ∈ BV([a, b];X)

will be called the singular part of w. In accordance with (1.88), we have the
Lebesgue decomposition of the measure dw in two parts: ẇ dt,dws ; dw = ẇ dt +
dws .
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Here, the measure ẇ dt defined by ϕ → ∫ b

a
ϕẇ dt is the absolutely continuous

part of dw with respect to the Lebesgue measure and dws is the singular part of dw.
In other words, there exists a closed subset Ω ⊂ [a, b] with the Lebesgue measure
zero, such that dws = 0, on [a, b] \ Ω .

Given a compact interval [a, b] ⊂R, a continuous function f : [a, b] → X∗, and
w ∈ BV([a, b];X), we denote by

∫ b

a
(dw,f ) the Riemann–Stieltjes integral:

∫ b

a

(dw,f ) = lim
d

n∑

i=1

(
f (ti),w(ti) − w(ti−1)

)
,

where the limit is taken through the directed set P of all the finite partitions d :
a = t1 < t1 < · · · < tn = b. (Here, (·, ·) denotes the pairing between X and X∗.)
By a classical device, it follows that this limit exists and the following estimate is
satisfied:

∣
∣
∣
∣

∫ b

a

(dw,f )

∣
∣
∣
∣ ≤ Var

(
w; [a, b]) sup

{∥
∥f (t)

∥
∥; t ∈ [a, b]}. (1.89)

Now, let Y be a reflexive Banach space and let F : [a, b] → L(X,Y ) be such that
the function F ∗ : [a, b] → L(Y ∗,X∗) is strongly continuous on [a, b] (F ∗ is the
adjoint operator). By definition, the Riemann–Stieltjes integral of F with respect to
w is the element

∫ b

a
F dw ∈ Y given by

(∫ b

a

F dw,y∗
)

=
∫ b

a

(
dw, (F ∗y∗)

)
, ∀y∗ ∈ Y ∗. (1.90)

Given a Banach space Z, we denote by C([a, b];Z) the Banach space of all conti-
nuous functions from [a, b] to Z endowed with the supp norm.

Proposition 1.125 Let w ∈ BV([a, b];X), f ∈ C([a, b];Y ∗) and U : [a, b] ×
[a, b] → L(X,Y ) be given such that U(t, s) and U∗(t, s) are strongly continuous
on [a, b] × [a, b]. Further, assume that the space Y is reflexive. Then we have

∫ b

a

(

f (t),

∫ b

t

U(t, s)dw(s)

)

dt =
∫ b

a

(

dw(s),

∫ s

a

U∗(t, s)f (t)dt

)

. (1.91)

For the proof, which is classical, we refer the reader to Höenig’s book [15].
Now, we give a weak form of the classical Helly Theorem in Banach spaces.

Theorem 1.126 Let X be a reflexive separable Banach space with separable
dual X∗. Let {wn} ⊂ BV([a, b];X) be such that ‖wn(t)‖ ≤ C for t ∈ [a, b] and
Var(wn; [a, b]) ≤ C for all n.

Then there exists a subsequence {wnk
} ⊂ {wn} and a function w ∈ BV([a, b];X)

such that, for k → ∞,

wnk
(t) → w(t), weakly in X for t ∈ [a, b], (1.92)
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∫ b

a

ϕ dwnk
→

∫ b

a

ϕ dw, weakly in X, ∀ϕ ∈ C
([a, b]). (1.93)

Proof Let x∗ ∈ X∗ be arbitrary, but fixed. By the classical theorem of Helly, there
exists a subsequence again denoted by {wn} and fx∗ ∈ BV([a, b]) such that

(
wn(t), x

∗) → fx∗(t), t ∈ [a, b].

Let S be a countable and dense subset of X∗. Then, applying the diagonal process,
we obtain a subsequence {wnk

} ⊂ {wn} having the property that

lim
nk→∞

(
wnk

(t), x∗) = fx∗(t), ∀x∗ ∈ S, t ∈ [a, b].

The density of S entails

lim
nk→∞

(
wnk

(t), x∗) = fx∗(t), ∀x∗ ∈ X∗, t ∈ [a, b]

and

lim
nk→∞

∫ b

a

ϕ d(wnk
, x∗) =

∫ b

a

ϕ dfx∗, ∀ϕ ∈ C
([a, b]).

By the uniform boundedness principle, it follows that there exists w : [a, b] → X,
such that

(
w(t), x∗) = fx∗(t), ∀t ∈ [a, b], x∗ ∈ X∗. �

Next, since by the assumption Var(fx∗; [a, b]) ≤ C‖x∗‖, where C is independent
of x∗ ∈ X∗, we conclude that w ∈ BV([a, b];X).

Remark 1.127 If X is a general Banach space and for each t ∈ [a, b] the family
{wn(t)} is compact in X, then the sequence {wnk

} can be chosen strongly convergent
on [a, b]. This strong version of the Helly Theorem is due to Foiaş and can be found
in the book of Nicolescu [23].

Corollary 1.128 Let f ∈ C([a, b];X∗) be given. Then under the conditions of The-
orem 1.126 we have

lim
nk→∞

∫ b

a

(dwnk
, f ) =

∫ b

a

(dw,f ). (1.94)

Proof By Theorem 1.126, relation (1.94) is satisfied for all f ∈ C([a, b];X∗) of the
form

f (t) =
N∑

i=1

aiϕi(t), t ∈ [a, b], (1.95)
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where ai ∈ X∗ and ϕi ∈ C([a, b]), i = 1, . . . ,N . Since the space of functions of the
form (1.95) is dense in C([a, b];X∗) and Var(wnk

; [a, b]) ≤ C, we infer by (1.89)
that relation (1.94) holds for every f ∈ C([a, b];X∗). �

Theorem 1.129 below gives a useful characterization of functions of bounded
variation. For the proof, we refer the reader to Brezis’ book [4].

Theorem 1.129 Let X be a Banach space and let x ∈ L1(a, b;X) be given. Let C

be a positive constant. Then the following two conditions are equivalent:

(i) There exists a function y ∈ BV([a, b];X) such that y(t) = x(t), a.e. t ∈ ]a, b[
and Var(y; [a, b]) ≤ C.

(ii) | ∫ b

a
(x(t),

dϕ
dt

)dt | ≤ C‖ϕ‖C([a,b];X∗), ∀ϕ ∈ D(a, b;X∗).

Here, D(a, b;X∗) is the space of all infinitely differentiable X∗-valued functions
with compact support in ]a, b[.

We denote by W 1,p([a, b];X), 1 ≤ p ≤ ∞, the space of all vector distributions
u ∈ D ′(a, b;X) having the property that u,u′ ∈ Lp(a, b;X), where u′ is the distri-
butional derivative of u.

Let A1,p([a, b];X) be the space of all absolutely continuous functions u : [a, b]
→ X, whose strong derivatives du

dt
(t) exist a.e. on ]a, b[, belong to Lp(a, b;X), and

which can be represented by

u(t) = u(a) +
∫ t

a

g(s)ds, for a ≤ t ≤ b, g ∈ Lp(a, b;X).

Theorem 1.130 Let X be a Banach space and let u ∈ Lp(a, b;X), 1 ≤ p < ∞, be
given. The following conditions are equivalent:

(j) u ∈ W 1,p([a, b];X)

(jj) There exists u1 ∈ A1,p([a, b];X) such that u(t) = u1(t), a.e. t ∈ ]0, T [
(jjj) limh→0

∫ −h

0 ‖h−1(u(t + h) − u(t)) − u′(t)‖p dt = 0.

For the proof, we refer to Brezis [4].
In particular, it follows by Theorem 1.130 that the space W 1,p([a, b];X) can be

identified with the space A1,p([a, b];X) endowed with the norm

‖u‖1,p =
(

∥
∥u(a)

∥
∥p +

∫ b

a

∥
∥u′(t)

∥
∥p dt

) 1
p

and, for every u ∈ W 1,p([a, b];X), the distributional derivative u′ coincides with
the strong derivative du

dt
.

Let V and H be a pair of real Hilbert spaces such that V ⊂ H ⊂ V ′ in the alge-
braic and topological sense. The norms in V and H will be denoted by ‖ · ‖ and | · |,
respectively. V ′ is the dual space of V , and H is identified with its own dual. We
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denote by (v1, v2) the inner product of v1 ∈ V and v2 ∈ V ′; if v1, v2 ∈ H , this is the
ordinary inner product in H . We set

W(0, T ) = {
u ∈ L2(0, T ;V ); u′ ∈ L2(0, T ;V ′)

}
,

where u′ is the distributional derivative of u. By virtue of Theorem 1.133, every
u ∈ W(0, T ) may be identified with a V ′-valued absolutely continuous function on
[0, T ], and u′ is the strong derivative of u : [0, T ] → V ′.

Proposition 1.131 Any function u ∈ W(0, T ) coincides almost everywhere on
[0, T ] with a continuous function from [0, T ] to H . Moreover, if u,v ∈ W(0, T ),
then the function t → (u(t), v(t)) is absolutely continuous on [0, T ] and

d

dt

(
u(t), v(t)

) =
(

du

dt
(t), v(t)

)

+
(

u(t),
dv

dt
(t)

)

a.e. t ∈ ]0, T [. (1.96)

Proof Let u and v be two elements of W(0, T ). Define ψ(t) = (u(t), v(t)). An easy
calculation, using Theorem 1.130(jjj), reveals that

lim
h→0

∫ T −h

0

∣
∣
∣
∣h

−1(ψ(t + h) − ψ(t)
) −

(
du

dt
(t), v(t)

)

−
(

u(t),
dv

dt
(t)

)∣
∣
∣
∣dt = 0.

�

Hence, ψ ∈ W 1,1([0, T ];R) and dψ
dt

(t) = ( du
dt

(t), v(t)) + (u(t), dv
dt

(t)) a.e. on
]0, T [, as claimed.

Now, in (1.96), we put v = u and integrate on [s, t], to get

1

2

(∣
∣u(t)

∣
∣2 − ∣

∣u(s)
∣
∣2) =

∫ t

s

(
du

dτ
,u

)

dτ.

Thus, the function t → |u(t)|2 is absolutely continuous on [0, T ]. Since the function
u is continuous from [0, T ] to V ′ (more precisely, it coincides a.e. with a continuous
function), we infer that, for every v ∈ V , t → (u(t), v) is continuous on [0, T ]. As
the space V is dense in H , we may conclude that it is weakly continuous on H .
Inasmuch as u is continuous on [0, T ], this implies that |u(t)| is strongly continuous
from [0, T ] to H .

Remark 1.132 Proposition 1.131 extends to a pair of reflexive Banach spaces
V,V ′ which are in duality and V ⊂ H ⊂ V ′ algebraically and topologically;
u ∈ Lp1(0, T ;V ), v ∈ W 1,p′

1([0, T ];V ′). The details are omitted.

1.3.4 Sobolev Spaces

We assume familiarity with the concepts and fundamental results in the theory of
scalar distributions. However, we recall for easy reference the basic notation and
definitions.
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Let Ω be an open subset of Rn. Denote by D(Ω) the space of all real-valued
infinitely differentiable functions with compact support in Ω , and by D ′(Ω) the
space of all scalar distributions defined on Ω , that is, the dual space of D(Ω). We
use the multi-index notation

Dαu(x) = D
α1
1 D

α2
2 · · ·Dαn

n u(x), x ∈ Ω, α = (α1, . . . , αn),

where Di = ∂
∂xi

, i = 1, . . . , n. The distribution Dαu defined by

Dαu(ϕ) = (−1)|α|u
(
Dαϕ

)
, ∀ϕ ∈ D(Ω), |α| = α + 1 + α2 + · · · + αn,

is called the derivative of order α of u ∈ D ′(Ω).
Let Lp(Ω), 1 ≤ p ≤ ∞, denote the usual Banach space of Lebesgue measurable

functions of equivalence classes from Ω to R under the norm

‖u‖p =
(∫

Ω

∣
∣u(x)

∣
∣p dx

) 1
p

if 1 ≤ p < +∞.

For 1 ≤ p < ∞ and k ≥ 1, we denote by Wk,p(Ω) the set of all functions u de-
fined in Ω , such that u and all its derivatives Dαu up to order k belong to Lp(Ω).
Wk,p(Ω) is a Banach space under the norm

‖u‖k,p =
∑

|α|≤k

∥
∥Dαu

∥
∥

p
. (1.97)

Let Ck
0 (Ω) denote the space of all functions u ∈ Ck(Ω) with compact support

in Ω . The completion of the space Ck
0 (Ω), normed by (1.97), will be denoted by

W
k,p
o (Ω). For simplicity, we write Wk,2(Ω) = Hk(Ω). The space W

k,2
0 (Ω) will,

similarly, be denoted by Hk
0 (Ω). Finally, denote by W−k,p′

(Ω), 1 ≤ p′ < +∞, the
set of all u ∈ D ′(Ω) which can be represented as

u =
∑

|α|≤k

Dαfα, fα ∈ Lp′
(Ω).

Now, we state without proof some important theorems concerning the Sobolev
spaces (for a proof, see Lions and Magenes [22], Chap. 1).

Theorem 1.133 The dual space of Hk
0 (Ω) coincides with the space H−k(Ω) =

W−k,2(Ω).

For every s ≥ 0, define Hs(Rn) = {u ∈ L2(Rn); (1 + |ξ |2) s
2 û(ξ) ∈ L2(Rn)},

where û denotes the Fourier transform of u. If k = s is a positive integer, then, by
Parseval’s formula, one can easily deduce that Hs(Rn) = Hs

0 (Ω), where Ω = R
n.

Now we suppose that Ω is a bounded and open subset of Rn with sufficiently
smooth boundary. More precisely, it will be assumed that the boundary Γ is an



52 1 Fundamentals of Functional Analysis

n−1-dimensional manifold of class C∞. This allows us to define the Sobolev space
Hs(Γ ) for any real s. Let L2(Γ ) be the space of all square integrable functions on
Γ with respect to measure dσ . Let N be a family of local charts on Γ and let
{αi} be a finite partition of unity subordinated to it. For any u ∈ L2(Γ ), we have
u ∈ ∑

i αiu.
Let ui = αiu. We say that u ∈ Hs(Γ ) if ui ∈ Hs(Rn−1) for all i. Hs(Γ ) is a

Hilbert space with the norm defined in an obvious manner. If s < 0, we set Hs(Γ ) =
(H−s(Γ ))∗.

Let C∞(Ω) be the space of all infinitely differentiable functions on Ω . For any

u ∈ C∞(Ω) we can define the derivatives of order j outward normal to Γ : ∂j u
∂νj .

It turns out that the mapping u → {u, ∂u
∂ν

, . . .} can be extended by continuity to all u

in Hk(Ω).

Theorem 1.134 The mapping u → { ∂j u
∂νj ; j = 0,1, . . . ,μ} from C∞(Ω) to

(C∞(Γ ))μ+1 extends to a linear continuous operator u → { ∂j u

∂νj ; j = 0,1, . . . ,μ}
from Hk(Ω) onto

∏μ
j=0 Hk−j− 1

2 (Γ ), where μ is the largest integer such that

μ ≤ k − 1
2 .

In particular, the above theorem shows that, for each u ∈ Hk(Ω), the ∂j u

∂νj ,

0 ≤ j ≤ μ, are well defined and belong to Hk−j− 1
2 (Γ ). The space Hk

0 (Ω) can,

equivalently, be defined as Hk
0 (Ω) = {u ∈ Hk(Ω); ∂j u

∂νj = 0, j = 0,1, . . . , k − 1}.

1.4 Maximal Monotone Operators and Evolution Systems
in Banach Spaces

This section summarizes some significant results on maximal monotone operators
and linear differential equations in Banach spaces. The generality is confined to
the context needed as a prerequisite for Chaps. 2 and 4. For a general approach to
the theory of nonlinear monotone operators, the reader is referred to the survey of
Browder [6] and to the books of Lions [21], Brezis [4], and Barbu [3]. As regards
the linear evolution equations, we refer the reader to the books of Yosida [30], Pazy
[24], and Krein [20].

1.4.1 Definitions and Fundamental Results

If X and Y are linear spaces, then X × Y will denote their Cartesian product space.
An element of the product space X × Y will be written in the form [x, y] for x ∈ X

and y ∈ Y .
A multi-valued operator A from X to Y will be viewed as a subset of X × Y .
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If A ⊂ X × Y , we define

Ax = {
y ∈ Y ; [x, y] ∈ A

}
, D(A) = {x ∈ X; Ax �= ∅},

R(A) =
⋃{

Ax; x ∈ D(A)
}
, A−1 = {[y, x]; [x, y] ∈ A

}
.

(1.98)

If A,B ⊂ X × Y , and λ is real, we set

λA = {[x,λy]; [x, y] ∈ A
}
,

A + B = {[x, y + z]; [x, y] ∈ A, [x, z] ∈ B
}
.

(1.99)

In the following, the operators from X to Y will not be distinguished from their
graphs in X × Y . If A is single-valued, Ax will denote either a value of A at x, or
the set defined in formula (1.98).

Throughout this chapter, X will be a real Banach space and X∗ will denote its
dual space. The notation for norms, convergence, duality mapping, and scalar prod-
uct will be the same as in Sect. 1.1. In particular, the value of x∗ ∈ X∗ at x ∈ X will
be denoted by either (x, x∗) or (x∗, x).

Definition 1.135 A subset A ⊂ X × X∗ is called monotone if

(x1 − x2, y1 − y2) ≥ 0, (1.100)

for any [xi, yi] ∈ A, i = 1,2. A monotone subset of X × X∗ is said to be maximal
monotone if it is not properly contained in any other monotone subset of X × X∗.

If A is a single-valued operator from X to X∗, then the monotonicity condition
(1.99) becomes

(x1 − x2,Ax1 − Ax2) ≥ 0 for all x1, x2 ∈ D(A). (1.101)

It must be noticed that if A ⊂ X×X∗ is maximal monotone, then, for each x ∈ X,
Ax is a closed convex subset of X∗. This is easily seen from the obvious formula

Ax = {
x∗ ∈ X∗; (x∗ − v, x − u) ≥ 0 for all [u,v] ∈ A

}
.

Definition 1.136 A subset A ⊂ X × X∗ is said to be locally bounded at x0 ∈ X if
there exists a neighborhood V of x0 such that A(V ) = ⋃{Ax; x ∈ D(A) ∩ V } is a
bounded subset of X∗. The operator A : X → X∗ is said to be bounded if it maps
every bounded subset of X into a bounded set of X∗.

Definition 1.137 Let A be a single-valued operator defined from X into X∗. A is
said to be demicontinuous if it is strongly–weak-star continuous from X to X∗, that
is,

lim
n→∞Axn = Ax0 weak-star in X∗, (1.102)

for any sequence {xn} ⊂ D(A) strongly convergent to x0 in X.
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Definition 1.138 The (multi-valued) operator A : X → X∗ is called coercive if

lim
n→∞

(x∗
n, xn − x0)

‖xn‖ = +∞, (1.103)

for some x0 ∈ X and all [xn, x
∗
n] ∈ A such that limn→∞ ‖xn‖ = +∞.

We begin with a rather technical result; the proof may be found in the first au-
thor’s book [3].

Theorem 1.139 Let X be a reflexive Banach space and let A and B be two mono-
tone subsets of X ×X∗ such that 0 ∈ D(A) and B : X → X∗ is demicontinuous and
bounded, and

lim
n→∞

(Bxn, xn)

‖xn‖ = +∞, (1.104)

for every sequence {xn} such that limn→∞ ‖xn‖ = +∞.
Then there exists x ∈ convD(A) such that

(u − x,Bx + v) ≥ 0 for all [u,v] ∈ A. (1.105)

With this tool in hand, the proof of the following basic theorem on maximal
monotone operators is straightforward.

Corollary 1.140 (Minty) Let X be a reflexive Banach space and let B be a
monotone, demicontinuous and bounded operator from X to X∗ satisfying condi-
tion (1.104). Let A be a maximal monotone subset of X × X∗. Then

R(A + B) = X∗.

Proof Let y0 be arbitrary but fixed in X∗. By Theorem 1.139, there exists x0 ∈ X

such that (u − x0,Bx0 − y0 + v) ≥ 0, for all [u,v] ∈ A. Hence, x0 ∈ D(A) and
y0 − Bx0 ∈ Ax0, because A is maximal monotone. We have, therefore, proved that
y0 ∈ R(A + B), as claimed. �

Theorem 1.141 Let X be reflexive and let F : X → X∗ be the duality mapping
of X. Let A be any monotone subset of X × X∗. Then A is maximal monotone in
X × X∗ if and only if, for any λ > 0 (equivalently, for some λ > 0), R(A + λF) is
all of X∗.

Proof If part. Assume that R(A + λF) = X∗, for some λ > 0. We have to show
that A is maximal monotone. Suppose that this is not the case, and that there exists
[x0, y0] ∈ X × X∗ such that [x0, y0]∈A and

(x − x0, y − y0) ≥ 0, for all [x, y] ∈ A. (1.106)

By hypothesis, there exists [x1, y1] ∈ A such that λFx1 + y1 = λFx0 + y0.
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Substituting [x1, y1] for [x, y] in inequality (1.106), we obtain
(
x1 − x0,F (x1) − F(x0)

) ≤ 0.

Since, by Theorem 1.105, the spaces X and X∗ can be chosen strictly convex, the
above inequality implies that x1 = x0, so that we have [x0, y0] = [x1, y1] ∈ A, which
is a contradiction.

Only if part. Renorming the spaces X and X∗ (see Theorem 1.105), we may
assume without loss of generality that X as well as X∗ are strictly convex. Then
the duality mapping F : X → X∗ is monotone, single-valued, demicontinuous and
bounded, and it satisfies condition (1.104). Then we may apply Corollary 1.140,
where B = λF , to conclude the proof. �

Theorem 1.141 is due to Rockafellar [27]. When specialized to the case when X

is a Hilbert space, this theorem yields the classical theorem of Minty.

Corollary 1.142 Let X be reflexive and let B be monotone, everywhere defined and
demicontinuous from X to X∗. Then B is maximal monotone.

Proof Suppose that B is not maximal monotone. Then we may find x0 in X and y0
in X∗ such that y0 �= Bx0, and

(Bx − y0, x − x0) ≥ 0 for every x ∈ X = D(B).

For each t ∈ [0,1], we set xt = tx0 + (1 − t)u, where u is arbitrary in X. Then

(Bxt − y0, x0 − u) ≤ 0 for all t ∈ [0,1].
In particular, it follows from the demicontinuity of B that

(Bx0 − y0, x0 − u) ≤ 0.

Thus, the arbitrariness of u ∈ X implies that y0 = Bx0, which contradicts the as-
sumption. �

Theorem 1.143 Let X be reflexive and let A be a maximal monotone and coercive
operator from X to X∗. Then R(A) = X∗.

Proof Let x∗
0 be any fixed element of X∗. Using the renorming theorem, we may

assume that X and X∗ are strictly convex. Then it follows by Theorem 1.141 that,
for every λ > 0, the equation

λFxλ + Axλ � x∗
0 (1.107)

has at least one solution xλ ∈ X. Using the monotonicity of A, we see, after multi-
plying equation (1.107) by (xλ −x0) (x0 is the element arising in condition (1.103)),
that

λ‖xλ‖2 + (Axλ, xλ − x0) ≤ ‖x∗
0‖‖xλ − x0‖ + λ‖xλ‖‖x0‖.
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Since A is coercive, this implies that {‖xλ‖} is bounded for λ → 0. We may, there-
fore, assume that {xλ} converges weakly to x0 in X and {Axλ} converges strongly
to x∗

0 in X∗ as λ → 0. Thus, by the monotonicity of A, we find that

(x∗
0 − y, x0 − x) ≥ 0 for all [x, y] ∈ A,

and, since A is maximal monotone, we may infer that Ax0 � x∗
0 . Thus, we have

shown that the range of A is all of X∗. �

Theorem 1.144 Let X be a real Banach space and let A be any monotone subset of
X × X∗. If x0 ∈ D(A) is an interior point of D(A), then A is locally bounded at x0.

Proof Assuming that A is not locally bounded at x0, we derive a contradiction. Let
{xn} ⊂ X and yn ∈ Axn be such that ‖yn‖ = λn → +∞ and xn → x0 as n → ∞.
Define

αn = max
{
λ−1

n , ‖xn − x0‖ 1
2
}
.

Obviously, αn → 0, αnλn ≥ 1 and αn ≥ α−1
n ‖xn − x0‖ → 0 for n → ∞. Let z be

any element of X and let un = x0 + αnz. Then, for n large enough, un ∈ D(A).
Let vn ∈ Aun. First, we show that {vn} is bounded in X∗. Let ρ > 0 be such that
x0 +ρz ∈ D(A) and let w0 ∈ A(x0 +ρz). Since A is monotone in X ×X∗, we have

(vn − w0, z)(αn − ρ) ≥ 0.

If αn < ρ, this implies (vn, z) ≤ (w0, z). Hence {(vn, z)} is bounded. Now, let x0 +
t0x ∈ D(A) and w ∈ A(x0 + t0x), where x is an arbitrary element of X. Once again,
using the monotonicity of A, we obtain 0 ≤ (vn − w,αnz − t0x) = αn(vn, z) −
t0(vn, x) − (w,αnz − t0x) and, therefore,

lim sup
n→∞

(vn, x) ≤ (w,x). (1.108)

Using the uniform boundedness Theorem 1.5, relation (1.108) implies that {vn} is
bounded in X∗. Next, the inequality (yn − vn, xn − un) ≥ 0 implies

(yn, z) ≤
(

xn − x0

αn

, yn

)

−
(

xn − x0

αn

− z, vn

)

≤ ‖yn‖‖xn − x0‖
αn

+ M

(‖xn − x0‖
αn

+ ‖z‖
)

≤ λnαn + M
(
αn + ‖z‖),

where M is a positive constant independent of n and z. Therefore,

lim sup
n→∞

(
yn

αnλn

, z

)

≤ 1 + M‖z‖ < ∞ for every z ∈ X,

which contradicts the uniform boundedness theorem (see Theorem 1.5), since

‖yn‖
λnαn

= 1

αn

→ ∞ as n → ∞. �
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Remark 1.145 Theorem 1.139 is due to Rockafellar [26].

We assume now that the space X is reflexive and strictly convex along with the
dual X∗. Let A be a maximal monotone subset of X×X∗. Since the duality mapping
F : X → X∗ is demicontinuous, it follows by Corollary 1.140 that, for every x ∈ X

and λ > 0, the equation

F(xλ − x) + λAxλ � 0 (1.109)

has at least one solution xλ. Since X is strictly convex, F−1 is single-valued and
along with the monotonicity of F and A this implies the uniqueness of xλ.

We set

xλ = Jλx; Aλx = λ−1F(x − xλ). (1.110)

In Proposition 1.146, we collect for later use some properties of the operators Jλ

and Aλ defined above.
First, we notice that the maximality of A implies that, for every x ∈ D(A), Ax

is a closed and convex subset of X∗. Hence, if the space X∗ is strictly convex, there
exists a unique element of minimum norm in Ax, which will be denoted A0x. In
other words,

∥
∥A0x

∥
∥ = |Ax| = inf

{‖y‖; y ∈ Ax
}
.

Proposition 1.146 For every λ > 0, we have the following:

(i) Aλ is monotone, bounded on bounded subsets and demicontinuous from X to
X∗. If X∗ is uniformly convex, then Aλ is continuous.

(ii) ‖Aλx‖ ≤ |Ax| for all x ∈ D(A).
(iii) limλ→0 Jλx = x for all x ∈ convD(A).
(iv) For every x ∈ D(A), Aλx → A0x weakly in X∗ for λ → 0. If X∗ is uniformly

convex, then the convergence is strong.
(v) If, for some sequence λn → 0, xn → x strongly and Aλnxn → y weakly, then

[x, y] ∈ A.
(vi) If X = H is a Hilbert space, then Jλ = (I + λA)−1 is a contraction on H , and

Aλ is Lipschitzian with constant λ−1.

Proof The proof of the monotonicity, boundedness, demicontinuity as well as of
(ii), (iii), (v), and (vi) can be found in the first author’s book [3], p. 42, so it will
be omitted. Here, we prove continuity of Aλ (under the assumption that X∗ is uni-
formly convex) and property (iv). Let {xn} ⊂ X be strongly convergent to x and let
un = Jλxn, vn = Aλxn ∈ Aun and yn = un − xn. We have

Fyn + λvn = 0.

Since A and F are monotone, the latter yields

(yn − ym,Fyn − Fym) ≤ C‖xn − xm‖, (1.111)
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because {vn} is bounded. On the other hand, since Aλ is demicontinuous, we have

Fyn → F(Jλx − x) weakly in X∗,
yn → Jλx − x weakly in X.

Then, by (4.14) and Lemma 1.3, p. 42, in the book cited above, it follows that

lim
n→∞

(‖Fyn‖2 = (Fyn, yn)
) = ∥

∥F(Jλx − x)
∥
∥2

.

Since the space X∗ is uniformly convex, the latter implies via Proposition 1.79 that
limn→∞ Fyn = F(Jλx − x). Hence, limn→∞ Aλxn = Aλx, as claimed.

(iv) Let x ∈ D(A) be fixed. Since {Aλx} is bounded in X∗, there exists ξ ∈ X∗
such that Aλnx → ξ weakly in X∗ on some sequence λn → 0. Since xλn → x and
Aλnx ∈ Axλn , we may infer that ξ ∈ Ax (A is strongly–weakly closed in X ×X∗ as
consequence of the maximal monotonicity).

Next, by (ii) we see that ‖ξ‖ ≤ ‖A0x‖ and hence ξ = A0x. We have, therefore,
proved that Aλx → A0x weakly in X∗ and ‖Aλx‖ → ‖A0x‖ for λ → 0. If X∗ is
uniformly convex, the latter implies via Proposition 1.85

Aλx → A0x strongly in X∗. (1.112)

�

1.4.2 Linear Evolution Equations in Banach Spaces

Let X be a (real or complex) Banach space with norm ‖ · ‖ and dual X∗. By L(X),
we denote in the sequel the algebra of linear continuous operators on X.

Consider the Cauchy problem

x ′(t) = A(t)x(t) + f (t), 0 ≤ t ≤ T ,

x(0) = x0,
(1.113)

where f ∈ L1(0, T ;X) and x0 ∈ X are given and {A(t); 0 ≤ t ≤ T } is a family of
closed and densely defined linear operators with domain and range both in X.

Consider also the homogeneous equation

x′(t) = A(t)x(t), 0 ≤ t ≤ T . (1.114)

Definition 1.147 The Cauchy problem for (1.114) is said to be well posed if there
exists a function U : Δ = {(s, t); 0 ≤ s ≤ t ≤ T } → L(X) having the following
properties:

(i) For each x0 ∈ X, the function (t, s) → U(t, s)x0 is continuous on Δ (that is, U

is strongly continuous on Δ).
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(ii) U(s, s) = I (the identity operator) for every s ∈ [0, T ].
(iii) U(t, s)U(s, τ ) = U(t, τ ) for 0 ≤ τ ≤ s ≤ t ≤ T .
(iv) For each s ∈ [0, T ], there exists a densely linear subspace Es of X such that,

for each x0 ∈ Es , the function t → U(t, s)x0 is continuously differentiable on
[s, T ] and

∂

∂t
U(t, s)x0 = A(t)U(t, s)x0, s ≤ t ≤ T . (1.115)

There is C > 0 such that
∥
∥U(t, s)

∥
∥

L(X)
≤ C for (t, s) ∈ Δ.

If the conditions of Definition 1.147 are satisfied, we say that the family
{A(t);0 ≤ t ≤ T } generates the evolution operator U(t, s).

If the Cauchy problem (1.113) is well posed, then by the solution to the
nonhomogeneous equation (1.113) we mean the continuous function x : [0, T ] → X

given by the formula

x(t) = U(t,0)x0 +
∫ t

0
U(t, s)f (s)ds, 0 ≤ t ≤ T . (1.116)

This is the so-called “mild” solution to (1.114). By a strong solution to (1.113), we
mean an absolutely continuous function x on [0, T ] which is almost everywhere
differentiable on ]0, T [ and satisfies (1.113) a.e. on ]0, T [.

It is well known that every strong solution to (1.113) can be written in this form;
(1.113) itself may not be satisfied by x given by the variation of the constant for-
mula (1.116), however.

Now, we point out some standard circumstances when the Cauchy problem for
(1.114) is well posed.

Time-Independent Equations If A(t) = A is independent of t , then the condi-
tions of Definition 1.147 are satisfied if and only if A is the infinitesimal generator of
a strongly continuous semigroup {S(t); t ≥ 0} of linear continuous operators on X

(semigroup of class C0). By the classical Hille–Yosida Theorem (see, for instance,
Yosida [30], p. 246) this happens if and only if A is closed, densely defined and
there is ω ∈R, such that

∥
∥(λI − A)−n

∥
∥

L(X)
≤ M(Re λ − ω)−n for Reλ > ω, n = 1,2, . . . .

In this case, the evolution operator associated to A exists for all 0 ≤ s ≤ t < ∞
and has the form: U(t, s) = S(t − s). For each x0 ∈ D(A) (the domain of A), the
function x(t) = S(t)x0 is continuously differentiable and satisfies (1.114) on R

+.
The operator A is called the infinitesimal generator of the semigroup S(t). If A is
dissipative, that is, Re(Ax,Fx) ≤ 0, ∀x ∈ D(A), where F : X → X∗ is the duality
mapping of X, then the semigroup S(t) is contractant, that is,

∥
∥S(t)

∥
∥

L(X)
≤ 1, ∀t ≥ 0.
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If the operator A is dissipative and R(I − A) = X (that is, A is m-dissipative),
then A generates a contraction semigroup on X. Sometimes we denote by eAt the
semigroup S(t) generated by A.

Finally, we notice that if A satisfies the condition

∥
∥(λI − A)−1

∥
∥

L(X)
≤ C

|λ| for | argλ| > θ >
π

2
, (1.117)

then A generates a semigroup S(t) which is analytic in t on R. (See, e.g., [20, 24,
30].) It is worth noting that in this case, for each x0 ∈ X, x(t) = S(t)x0 is conti-
nuously differentiable on R

+ and satisfies (1.114) on all of R+. Moreover, we have
the following proposition.

Proposition 1.148 Let X be a Hilbert space and let A satisfy condition (1.117).
Then, for each f ∈ L2(0, T ;X) and x0 ∈ D(A), problem (1.113) has a unique
strong solution x ∈ W 1,2([0, T ];X) satisfying

∫ T

0

∥
∥x′(t)

∥
∥2 dt ≤ C

(

‖Ax0‖2 +
∫ T

0

∥
∥f (t)

∥
∥2 dt

)

, (1.118)

where C is independent of x0 and f .

Proof To prove the proposition, it suffices to verify estimate (1.118) for any strong
solution x to (1.113). If x is such a solution, let us denote by x̃ the solution to

x̃′ = Ax̃ + fT , t ≥ 0,

x̃(0) = x0,
(1.119)

where fT (t) = f (t) for 0 ≤ t ≤ T and fT (t) = 0 for T ≤ t < ∞. Let α > 0 be
such that ‖eAt‖L(X) ≤ Me

αt
2 for all t ≥ 0 (such a constant α always exists). For

λ = −α + iξ , ξ ∈R, we set

x̂(λ) =
∫ ∞

0
eλt x̃(t)dt,

f̂T (t) =
∫ ∞

0
eλtfT (t)dt.

By (1.119), it follows that

(λI + A)x̂(λ) = −x0 − f̂T (t)

and, therefore,

λx̂(λ) + x0 = (λI + A)−1Ax0 + λ(λI + A)−1f̂T (t) − f̂T (t).

Thus, by (1.117),
∥
∥λx̂(λ) + x0

∥
∥ ≤ C‖Ax0‖ |α − iξ |−1 + C

∥
∥f̂T (λ)

∥
∥, ξ ∈ R. (1.120)
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Recalling that

λx̂(λ) + x0 = −
∫ ∞

0
e−αteiξ t x̃′(t)dt, ξ ∈R,

it follows, by (1.120) and the Parseval formula, that

∫ ∞

0
e−2αt

∥
∥x̃′(t)

∥
∥2 dt ≤ C1

(

‖Ax0‖2 +
∫ ∞

0
e−2αt

∥
∥fT (t)

∥
∥2 dt

)

.

Since x̃(t) = x(t) for t ∈ [0, T ], the latter yields (1.118). �

Time-Dependent “Parabolic” Equations, Hilbert Theory Let H be a real
Hilbert space and let V be another real Hilbert space with the dual V ′ such that
V ⊂ H ⊂ V ′ and such that the inclusion mapping of V into H is continuous and
densely defined. The norms in V and H will be denoted by ‖ · ‖ and | · |, respec-
tively. Denote by ‖ · ‖∗ the norm (dual) of V ′ and by (v1, v2) the value of v1 ∈ V ′
in v2 ∈ V ; if v1, v2 ∈ H , this is the ordinary inner product in H . We are given a
family of linear operators A(t) : V → V ′, 0 ≤ t ≤ T , which are assumed to satisfy
the following conditions:

(j) For every u ∈ V , the function t → A(t)u is strongly measurable on [0, T ].
(jj) For every t ∈ [0, T ], A(t) is continuous from V to V ′ and there exists C > 0

such that ‖A(t)‖L(V,V ′) ≤ C, a.e. t ∈ [0, T ].
(jjj) There are ω > 0 and α ∈ R, such that

(
A(t)y, y

) + ω‖y‖2 ≤ α|y|2 for all y ∈ V, a.e. t ∈ ]0, T [. (1.121)

Proposition 1.149 Let x0 ∈ H and f ∈ L2(0, T ;V ′) be given. Then, under assump-
tions (j)–(jjj), there exists one and only one function x ∈ W(0, T ) satisfying

x′(t) = A(t)x(t) + f (t) a.e. t ∈ ]0, T [,
x(0) = x0.

(1.122)

If A(t) = A is independent of t , Ax0 ∈ H , f ∈ L2(0, T ;H), then x ∈ W 1,2([0, T ];
H) and

∫ T

0

∣
∣x ′(t)

∣
∣2

dt ≤ C

(

|Ax0|2 +
∫ T

0

∣
∣f (t)

∣
∣2

dt

)

, (1.123)

where C is independent on x0 and f .

The proof can be found in Lions and Magenes [22], Chap. 4. The first part of the
proposition remains valid for nonlinear hemicontinuous monotone operators A(t) :
V → V ′ (Lions [21], Barbu [3]). The second part follows by Proposition 1.148,
since, as is easily seen, if A(t) ≡ A is independent on t and satisfies (1.121), then A

is the infinitesimal generator of an analytic semigroup on H .
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In applications, X is usually a space of functions defined on a domain Ω of the
Euclidean space R

n, and A(t) is a linear partial differential operator on Ω with
null boundary conditions. Another motivation for considering infinite-dimensional
systems of the form (1.113) comes from differential functional systems. Here, we
present briefly some important examples of this type.

Parabolic Equations with Dirichlet Conditions Let Ω be a bounded and open
domain of Rn with a sufficient smooth boundary Γ . We consider on Ω the second
order differential operator defined by

Ly = −
n∑

i,j=1

(aij yxj
)xi + ay,

where aij , ai ∈ C1(Ω), a ∈ L∞(Ω), a ≥ 0 in Ω , and

n∑

i,j=1

aij ξiξj ≥ ω|ξ |2, a.e. x ∈ Ω, ∀ξ ∈R
n, (1.124)

where ω > 0. (Here, the subscript xi denotes partial differentiation with respect
to xi .) According to a classical result due to Agmon and Nirenberg, the operator
A defined by Ay = −Ly for y ∈ D(A) = W

1,p

0 (Ω) ∩ W 2,p(Ω) is the infinitesimal
generator of a contraction semigroup of class C0 on Lp(Ω), 1 ≤ p ≤ ∞ [24].

Parabolic Equations with Homogeneous Neumann Conditions In the space
L2(Ω), we define the linear operator Ay = −Ly with the domain

D(A) =
{

y ∈ H 2(Ω); αy + ∂y

∂ν
= 0 on Γ

}

,

where α is a nonnegative constant, and where ∂
∂ν

denotes the outward normal deriva-
tive corresponding to L. The operator A is m-dissipative on L2(Ω) and, therefore,
it generates a contraction semigroup eAt on L2(Ω). Moreover, since A is self-
adjoint, the semigroup eAt is analytic.

Parabolic Equations with Mixed Boundary Value Conditions Let Ω be
a bounded and open domain of R

n, whose boundary Γ consists of two dis-
joint smooth parts Γ1 and Γ2. Assume that conditions (1.124) hold. We set
V = {y ∈ H 1(Ω);y = 0 in Γ1} and define the operator A ∈ L(V,V ′)

(Ay, z) =
∫

Ω

aij yxj
zxi

dx +
∫

Ω

ayz dx for all z ∈ H 1(Ω).

Assumptions (j)–(jjj) are satisfied and therefore the operator −A with the domain
D(A) = {y ∈ V ;Ay ∈ L2(Ω)} generates a C0-semigroup on L2(Ω). On the other
hand, by Green’s formula we see that ∂y

∂ν
= 0 in Γ2 for all y ∈ D(A). (Since
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y ∈ H 1(Ω) and Ay ∈ L2(Ω), ∂y
∂ν

may be defined as an element of H− 1
2 (Γ ).) In

other words, D(A) may be regarded as the set of all functions y ∈ H 1(Ω) which
satisfy the boundary value conditions y = 0 in Γ1, ∂y

∂ν
= 0 in Γ2.

1.5 Problems

1.1 Let A,B be two nonvoid disjoint convex sets in a linear space X. Show that
there exist two disjoint convex sets A0,B0 such that A ⊂ A0, B ⊂ B0, A0 ∪B0 = X.

Hint. Consider a maximal element of the family F of all pairs (U,V ) of disjoint
convex sets such that A ⊂ U , B ⊂ V , endowed with the order relation given by
inclusion using the Zorn Lemma.

1.2 Let A,B be two convex sets. Show that co(A ∪ B) = ⋃
x∈A
y∈B

[x, y].

Hint. Use formula (1.23).

1.3 Find pA,Dom(pA),Ari,Aac,Arb of the following sets in R2:

(i) A = {(x1, x2);x2
1 + x2

2 ≤ 1 if x1 ≤ 0 and |x2| ≤ 1 if x1 > 0}
(ii) A = {(x1, x2);x1x2 ≤ 1}

(iii) A = {(x1, x2);x1 + |x2| ≤ 1 and x1 ≥ 0}.

Hint. (i) pA(x1, x2) = (x2
1 + x2

2)
1
2 if x1 ≤ 0 and pA(x1, x2) = |x2| if x1 > 0,

Dom(pA) = R.

(ii) pA(x1, x2) = (x1, x2)
1
2 if x1x2 ≥ 0, and pA(x1, x2) = ∞ if x1x2 < 0,

Dom(pA) = {(x1, x2); x1x2 ≥ 0}.
(iii) pA(x1, x2) = x1 + |x2| if x1 ≥ 0 and pA(x1, x2) = ∞ if x1 < 0.

1.4 Are the equalities of Propositions 1.19 and 1.22 and Corollaries 1.21 and 1.23
true for the sets in Problem 1.3?

1.5 Let A1,A2, . . . ,An be convex sets which contain the origin. Find pA if A =⋂n
i=1 Ai in terms of pAi

, i = 1, n.

Hint. pA = max1≤i≤n pAi
.

1.6 Let R
∞ be the linear space of all sequences of real numbers having a fi-

nite number of elements different to zero endowed with the Euclidean norm
‖x‖ = (

∑∞
i=1 x2

i )
1
2 , x = (xi)i∈N ∈ R

∞. Show that the set S = {m−1(δnm)n∈N∗ ; m ∈
N

∗} ∪ {0} is a compact set although its convex hull if not compact.

Hint. We denote em = (δnm)n∈N∗, m ∈ N
∗. The sequence (m−1em)m∈N∗ → 0 in

R
∞ since ‖m−1em‖ = m−1. Hence, S is compact. Now, let us consider a sequence
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(xn)n∈N∗ in convS. By (1.23), we have xn = ∑αn

m=1 λnmm−1em, where λnm ≥ 0

and
∑αn

m=1 λnm = 1. Take λnm = 2n

2m(2n−1)
, n,m ∈ N

∗, αn = n, n ∈ N
∗. Then the

sequence (λnm)n∈N∗ → 1
2n for each n ∈ N

∗. Thus, (xn)n∈N converges in �2 to an

element which is not in R
∞. Hence, any subsequence of the sequence (xn)n∈ N∗ is

not convergent in convS.

1.7 Show that the norm in a linear normed space X is generated by a semi-inner
product, which is an application 〈·, ·〉 : X × X → R with the following properties:

(i) 〈x, x〉 ≥ 0 for all x ∈ X and 〈x, x〉 = 0 if and only if x = 0
(ii) 〈a1x1 + a2x2, y〉 = a1〈x1, y〉 + a2〈x2, y〉, for all a1, a2 ∈ R, x1, x2, y ∈ X

(iii) 〈x, y〉2 ≤ 〈x, x〉〈y, y〉, for all x, y ∈ X.

Hint. Define 〈x, y〉 = (fy)(x), x, y ∈ X, where f is a selection of the duality
mapping F (see Definition 1.99), that is, fy ∈ Fy for every y ∈ X.

1.8 Prove that the Dieudonné criterion (Corollary 1.61) is also in order if A∞ ∩B∞
is a closed linear subspace.

Hint. It suffices to consider the quotient space with respect to the linear subspace
A∞ ∩ B∞.

1.9 Let A be a closed convex set. Show that x ∈ A∞ if and only if A+ tx ⊂ A for all
t ≥ 0. In particular, A + x ⊂ A for all x ∈ A∞ and so any semi-straight line starting
from an element in A which has the direction of an element in A∞ is contained
in A.

Hint. Use formula (1.37).

1.10 Show that in C[0,1] any weakly convergent sequence is pointwise convergent.

Hint. Consider the Dirac functional defined by δt (x) = x(t) for all x ∈ C[0,1],
where t ∈ [0,1]. Obviously, δt ∈ (C[0,1])∗ for every t ∈ [0,1]. Now apply Propo-
sition 1.65(iv).
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Chapter 2
Convex Functions

In this chapter, the basic concepts and the properties of extended real-valued convex
functions defined on a real Banach space are described. The main topic, however, is
the concept of subdifferential and its relationship to maximal monotone operators.
In addition, concave–convex functions are examined because of their importance in
the duality theory of minimization problems as well as in min-max problems.

2.1 General Properties of Convex Functions

We develop here the basic concepts and results on convex functions which were
briefly presented in Chap. 1.

2.1.1 Definitions and Basic Properties

In Chap. 1, we have already become familiar with convex functions (see Defini-
tion 1.32) and their relationship to convex sets. In this section, the concept of convex
function on a real linear space X will be extended to include functions with values
in R = [−∞,+∞] (extended real-valued functions).

Definition 2.1 The function f : X → R is called convex if the inequality

f
(
λx + (1 − λ)y

)≤ λf (x) + (1 − λ)f (y) (2.1)

holds for every λ ∈ [0,1] and all x, y ∈ X such that the right-hand side is well
defined. The function f is called strictly convex if an inequality strictly holds in
inequality (2.1) for every λ ∈ ]0,1[ and for all pairs of distinct points x, y in X with
f (x) < ∞ and f (y) < ∞.

V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces,
Springer Monographs in Mathematics,
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The function g : X → R is said to be (strictly) concave if the function −g is
(strictly) convex. It should be observed that if f is convex, then the inequality

f

(
n∑

i=1

λixi

)

≤
n∑

i=1

λif (xi), λi ≥ 0,

n∑

i=1

λi = 1

holds for all x1, . . . , xn in X, for which the right-hand side makes sense.
Another consequence of convexity of f : X → R is the convexity of the level

sets,
{
x ∈ X; f (x) ≤ λ

}
,

where λ ∈ R. However, as is readily seen, the functions endowed with this property
are not necessarily convex. Such functions are called quasi-convex.

The function f is called proper convex if f (x) > −∞ for every x ∈ X, and if
f is not the constant function +∞ (that is, f �≡ +∞). Given any convex function
f : X →R, we denote by Dom(f ) (sometimes domf ) the convex set

Dom(f ) = {x ∈ X; f (x) < +∞}. (2.2)

Such a set Dom(f ) is called the effective domain of f . If f is proper, then Dom(f )

is the finiteness domain of f . Conversely, if A is a nonempty convex subset of X

and if f is a finite and convex function on A, then one can obtain a proper convex
function on X by setting f (x) = +∞ if x ∈ X \ A. Using all this, we are able to
introduce an important example of convex function. Given any nonempty subset A

of X, the function IA on X, defined by

IA(x) =
{

0, if x ∈ A,

+∞, if x ∈A,
(2.3)

is called the indicator function of A.

The characterization of convexity follows.

Proposition 2.2 The subset A of X is convex if and only if its indicator function IA

is convex.

Let f : X →R be any extended real-valued function on X. The set

epif = {(x,α); x ∈ X, α ∈ R, f (x) ≤ α
}

(2.4)

is called the epigraph of f . The set

hypof = {(x,α); x ∈ X, α ∈R, f (x) ≥ α
}

(2.5)

is called the hypograph of f .
Proposition 2.3, which follows, demonstrates that the above-mentioned theory of

convex functions and that of convex sets overlap considerably.
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Proposition 2.3 A function f : X → R is convex if and only if its epigraph is a
convex subset of X ×R.

Proof Sufficiency. Suppose that f is convex and (x,α), (y,β) ∈ epif and λ ∈
[0,1]. We set w = (1 − λ)x + λy and t = (1 − λ)α + λβ . From the inequality

f (w) ≤ (1 − λ)f (x) + λf (y) ≤ t

it follows that (w, t) ∈ epif . This proves that epif is a convex set of X ×R.
Necessity. Suppose that epif is convex, but for some x, y ∈ X and some λ ∈

[0,1] the inequality

f (w) = f
(
(1 − λ)x + λy

)
> (1 − λ)f (x) + λf (y)

holds. In particular, the latter shows that 0 < λ < 1 and that neither f (x) nor f (y)

can be +∞. Thus, there exist real numbers α,β such that (x,α) and (y,β) belong
to epif . Thus, for each x, y and λ, one has

inf
{
(1 − λ)α + λβ; (x,α), (y,β) ∈ epif

}= (1 − λ)f (x) + λf (y).

Since the epigraph of f is convex, we have

f (w) = inf
{
t; (w, t) ∈ epif

}≤ (1 − λ)f (x) + λf (y) < f (w).

The contradiction we arrived at concludes the proof. �

A similar characterization of concave function can be given in terms of its hypo-
graph.

2.1.2 Lower-Semicontinuous Functions

Let X be a topological space.

Definition 2.4 The function f : X → R is called lower-semicontinuous (upper-
semicontinuous) at x0 if

f (x0) = lim inf
x→x0

f (x)
(
f (x0) = lim sup

x→x0

f (x)
)
. (2.6)

We recall that

lim inf
x→x0

f (x) = sup
V ∈V (x0)

inf
s∈V

f (s) (2.7)

and

lim sup
x→x0

f (x) = inf
V ∈V (x0)

sup
s∈V

f (s), (2.8)

where V (x0) is a base of neighborhoods of x0 in X.
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A function which is lower-semicontinuous at each point of X is called lower-
semicontinuous on X.

Let us denote by τ� the topology on R defined by the following basis of open
sets:

τ� = {]a,+∞[; a ∈ [−∞,+∞[}∪ {∅,R
}
.

It is readily seen that the function f : X → R is lower-semicontinuous (l.s.c.) at x0

if and only if f : X → (R, τ�) is continuous at x0. The topology τ� is called the
lower-topology of R. The upper-semicontinuity is similarly defined.

Since a function f is upper-semicontinuous if and only if −f is lower-
semicontinuous, the following considerations will be restricted to the basic pro-
peries of lower-semicontinuous functions as required for the purpose of the next
section.

Proposition 2.5 Let X be a topological space and let f : X → R be any extended
real-valued function on X. Then, the following conditions are equivalent:

(i) f is lower-semicontinuous on X.
(ii) The level sets {x ∈ X;f (x) ≤ λ}, λ ∈R, are closed.

(iii) The epigraph of the function f is closed in X ×R.

Proof It is well known that a function is continuous if and only if the inverse image
of every closed subset is closed. Since {x ∈ X;f (x) ≤ λ} = f −1([−∞, λ]) and (i) is
equivalent to the continuity of f : X → (R, τ�), we may conclude that conditions (i)
and (ii) are equivalent.

We define

ϕ(x, t) = f (x) − t for x ∈ X and t ∈R

and observe that f is lower-semicontinuous on X if and only if ϕ : X × R → R is
lower-semicontinuous on the product space X ×R. Furthermore, the equivalence of
conditions (i) and (ii) for ϕ implies that (ii) and (iii) are also equivalent, since

epif − (0, λ) = {(x, t) ∈ X ×R; ϕ(x, t) ≤ λ
}
,

that is, the level sets of the function ϕ are translates of epif . Proposition 2.5 has
now been proved. �

Corollary 2.6 The upper-envelope of a family of lower-semicontinuous functions is
also a lower-semicontinuous function.

Proof It suffices to apply Proposition 2.5, condition (ii), and to observe that

{
x ∈ X; sup

i∈I

fi(x) ≤ λ
}

=
⋂

i∈I

{
x ∈ X; fi(x) ≤ λ

}
.

�
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Corollary 2.7 A subset A of X is closed if and only if its indicator function IA is
lower-semicontinuous.

An important property of lower-semicontinuous functions is given by the follow-
ing well-known Weierstrass theorem.

Theorem 2.8 (Weierstrass) A lower-semicontinuous function f on a compact topo-
logical space X takes a minimum value on X. Moreover, if it takes only finite values,
it is bounded from below.

Proof Since, by Proposition 2.5, every level subset of f is closed, using the
nonempty ones among them we form a filter base on the compact space X. This
filter base has at least one adherent point x0 which clearly lies in all the nonempty
level subsets. Thus, f (x0) ≤ f (x) for all x in X, thereby proving Theorem 2.8. �

2.1.3 Lower-Semicontinuous Convex Functions

Throughout this section, X is a topological linear space over a real field. It may be
seen that, if a convex function f takes the value −∞, then the set of all points where
f is finite is quite “rare”. If f is actually convex and lower-semicontinuous on X,
then f is nowhere finite on X. Namely, one has the following proposition.

Proposition 2.9 Let f : X → R be a convex and lower-semicontinuous function.
Assume that there exists x0 ∈ X such that f (x0) = −∞. Then f is nowhere finite
on X.

Proof If there was a y0 ∈ X such that −∞ < f (y0) < +∞, then the convexity of f

would imply that f (λx0 + (1 − λ)y0) = −∞, for each λ ∈ ]0,1].
Inasmuch as f is lower-semicontinuous, letting λ approach to zero, f (y0) = −∞

would hold, which contradicts the assumption. The proof is now complete.
Let f : X → R be any convex function on X. The closure of the function f ,

denoted by clf , is by definition the lower-semicontinuous hull of f , that is,
clf = lim infy→x f (y) for all x ∈ X if lim infy→x′ f (y) > −∞ for every x ′ ∈ X

or clf () = −∞ for all x ∈ X if lim infy→x′ f (y) = −∞ for some x′ ∈ X. The con-
vex function f is said to be closed if clf = f . Particularly, a proper convex function
is closed if and only if it is lower-semicontinuous.

For every proper closed convex function one has

(clf )(x) = lim inf
y→x

f (y), ∀x ∈ X. (2.9)

As a consequence of equality (2.9), one obtains

epi(clf ) = epif , (2.10)
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or, more specifically,

{
x ∈ X; (clf )(x) ≤ α

}=
⋂

λ>α

{
x ∈ X; f (x) ≤ λ

}

for every α ∈R. In particular, it follows from (2.7) that

inf
{
f (x); x ∈ X

}= inf
{
(clf )(x); x ∈ X

}
. (2.11)

Likewise, it should be observed that in general the closure of the convex function
f is the greatest closed convex function majorized by f (namely, the pointwise
supremum of the collection of all closed convex functions g, such that g(x) ≤ f (x),
for every x ∈ X). �

Furthermore, we give some simple results pertaining to lower-semicontinuous
convex functions.

Proposition 2.10 Let X be a locally convex space. A proper convex function
f : X → ]−∞,+∞] is lower-semicontinuous on X if and only if it is lower-
semicontinuous with respect to the weak topology on X.

Proof We have already seen in Chap. 1 (Proposition 1.73 and Remark 1.78) that
a convex subset is (strongly) closed if and only if it is closed in the corresponding
weak topology on X. In particular, we may infer that epif is (strongly) closed if it
is weakly closed. This establishes Proposition 2.10. �

Theorem 2.11 Let f be a lower-semicontinuous, proper and convex function on a
reflexive Banach space X. Then f takes a minimum value on every bounded, convex
and closed subset M of X. In other words, x0 ∈ M exists such that

f (x0) = inf
{
f (x); x ∈ M

}
.

Proof We apply Theorem 2.8 to the space X endowed with weak topology. (Accor-
ding to Corollary 1.95, every closed and bounded subset of a reflexive Banach space
is weakly compact.) �

Remark 2.12 If in Theorem 2.11 we further suppose that f is strictly convex, then
the minimum point x0 is unique.

Remark 2.13 In Theorem 2.11, the condition that M is bounded may be replaced
by the coercivity condition

lim
‖x‖→+∞
x∈M

f (x) = +∞. (2.12)

In fact, let x1 ∈ Dom(f ) and k > 0 be such that

f (x) > f (x1) for ‖x‖ > k, x ∈ M.
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Obviously,

inf
{
f (x); x ∈ M

}= inf
{
f (x); x ∈ M ∩ S(0, k)

}
,

where S(0, k) = {x ∈ X; ‖x‖ ≤ k}. Thus, we may apply the preceding theorem
where M is replaced by M ∩ S(0, k).

Now, we divert our attention to the continuity properties of the convex functions.
The main result is contained in the following theorem.

Theorem 2.14 Let X be a topological linear space and let f : X → ]−∞,+∞] be
a proper convex function on X. Then, the function f is continuous on int Dom(f )

if and only if f is bounded from above on a neighborhood of an interior point of
Dom(f ).

Proof Since the necessity is obvious, we restrict ourselves to proving the sufficiency.
To this end, consider any point x0 which is interior to the effective domain Dom(f ).
Let V ∈ V (x0) be a circled neighborhood of x0 such that f (x) ≤ k for all x ∈ V .
Since X is a linear topological space, the function f is continuous at x = x0 if and
only if the function x → f (x + x0) − f (x0) is continuous at x = 0. Thus, without
any loss of generality, we may assume that x0 = 0 and f (x0) = 0. Furthermore, we
may assume that V is a circled neighborhood of 0. Since f is convex, we have

f (x) = f

(

ε
x

ε
+ (1 − ε)0

)

≤ εf

(
x

ε

)

≤ εk,

for all x ∈ εV , where ε ∈ ]0,1[. On the other hand,

0 = f (0) ≤ 1

2

(
f (x) + f (−x)

)

and therefore

−f (x) ≤ f (−x) ≤ εk for every x ∈ −εV = εV .

Thus, we have shown that |f (x)| ≤ εk for each x ∈ εV . In other words, the function
f is continuous at the origin. Now, we prove that f is continuous on int Dom(f ).
Let z be any point in int Dom(f ) and let ρ > 1 be such that z0 = ρz ∈ Dom(f ).
According to the first part of the proof, it suffices to show that f is bounded from
above on a neighborhood of z. Let V be the neighborhood of the origin given above,
and let V (z) be a neighborhood of z defined by

V (z) = z +
(

1 − 1

ρ

)

V.
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Once again, making use of the convexity of f , we obtain

f (u) = f

(
1

ρ
z0 +

(

1 − 1

ρ

)

x

)

≤ 1

ρ
f (z0) +

(

1 − 1

ρ

)

f (x)

≤ 1

ρ
f (z0) +

(

1 − 1

ρ

)

k for all u ∈ V (z).

Hence, f is bounded above on V (z), as claimed. This completes the proof. �

As a consequence, we obtain the next corollary.

Corollary 2.15 If a proper convex function f : X → ]−∞,+∞] is upper-
semicontinuous at a point which is interior to its effective domain Dom(f ), then
f is continuous on int Dom(f ).

For a lower-semicontinuous convex function, this result may be clarified as fol-
lows.

Proposition 2.16 Let X be a real Banach space and let f : X → ]−∞,+∞] be a
lower-semicontinuous proper convex function. Then f is continuous at every alge-
braic interior point of its effective domain Dom(f ).

Proof Without any loss of generality, we may restrict ourselves again to the case
in which the origin in an algebraic interior to the effective domain Dom(f ). We
choose any real number α such that α > f (0) and set A = {x ∈ X;f (x) ≤ α}. The
level set A is convex, closed and contained in the effective domain of f . Let us
observe that the origin is an algebraic interior point of A. Indeed, for every x ∈ X,
there corresponds ρ > 0 such that x0 = ρx ∈ Dom(f ). Here, we have used the fact
that the origin is an algebraic interior point of Dom(f ). Since f is convex, we have

f (λρx) = f
(
λx0 + (1 − λ)0

)≤ λ
(
f (x0) − f (0)

)+ f (0),

for every λ ∈ [0,1]. Therefore, there exists δ > 0 such that f (λρx) ≤ α for every
λ ∈ [0, δ]. This shows that the origin is an algebraic interior point of A. According
to Remark 1.24, this fact implies that the origin is an interior point of the closed
convex set A. In other words, we have shown that f is bounded from above by α on
the neighborhood A of the origin. Applying Theorem 2.14, we may infer that f is
continuous on this neighborhood, thereby proving Proposition 2.16. �

If X is a finite-dimensional space, Proposition 2.16 can be considerably
strengthened. More precisely, we have the next proposition.

Proposition 2.17 Every proper convex function f on a finite-dimensional separated
topological liner space X is continuous on the interior of its effective domain.
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Proof We suppose again that the origin belongs to the interior of the effective
domain Dom(f ) of the function f . Let {ei; i = 1,2, . . . , n} be a basis of the n-
dimensional space X, and let a be a sufficiently small positive number such that

U =
{

x ∈ X; x =
n∑

i=1

xiei, 0 < xi <
a

n
, i = 1,2, . . . , n

}

⊂ Dom(f ).

Using the convexity of f , since

x =
n∑

i=1

xiei =
n∑

i=1

xi

a
aei +

(

1 −
n∑

i=1

xi

a

)

· 0,

we obtain the inequality

f (x) ≤
n∑

i=1

xi

a
f (aei) +

(

1 −
n∑

i=1

xi

a

)

f (0) ≤ 1

n

n∑

i=1

∣
∣f (aei)

∣
∣+ ∣∣f (0)

∣
∣

for every x ∈ U.

Thus, the function f is bounded from above on U ⊂ Dom(f ). But it is obvious
that U is open. This implies, according to Theorem 2.14, that f is continuous on
int Dom(f ), which completes the proof. �

Concerning the continuity of proper convex functions, the results are similar to
those obtained for linear functionals: the continuity at a point implies the continuity
everywhere and this is equivalent to the boundedness on a certain neighborhood.
However, for convex functions these facts are restricted to the interior of effective
domain. In this context, our attention has to be restricted to those points of Dom(f )

which do not belong to int Dom(f ). In addition to the continuity of f on X, we
introduce the concept of continuity on Dom(f ). These two concepts are clearly
equivalent on int Dom(f ), but not necessarily on Dom(f ). Also, we notice for later
use that

int(epif ) = {(x,α) ∈ X ×R; x ∈ int Dom(f ), f (x) < α
}
. (2.13)

2.1.4 Conjugate Functions

Let X be a real linear locally convex space and let X∗ be its conjugate space. Con-
sider any function f : X → R. The function f ∗ : X∗ →R defined by

f ∗(x∗) = sup
{
(x, x∗) − f (x); x ∈ X

}
, x∗ ∈ X∗ (2.14)

is called the conjugate function of f . The conjugate of f ∗, that is, the function f ∗∗
on X defined by

f ∗∗(x) = sup
{
(x, x∗) − f ∗(x∗); x∗ ∈ X∗}, x ∈ X, (2.15)
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is called the biconjugate of f (with respect to the natural dual system given by X

and X∗). The conjugate of order n, denoted by f (n)∗, of the function f is similarly
defined.

We pause briefly to observe that relations (2.14) and (2.15) yield

f (x) + f ∗(x∗) ≥ (x, x∗) (2.16)

and

f ∗(x∗) + f ∗∗(x) ≥ (x, x∗), (2.17)

for all x ∈ X and x∗ ∈ X∗. Inequality (2.16) is known as the Young inequality.
Observe also that if f is proper, then “sup” in relation (2.14) may be restricted to
the points x which belong to Dom(f ).

Example 2.18 The conjugate of the indicator function IA of a subset A of X is
given by

I ∗
A(x∗) = sup

{
(x, x∗); x ∈ A

}
. (2.18)

The function I ∗
A, usually denoted by sA, is called the support functional of A. It

should be observed that A is contained in a closed half-space, {x ∈ X; (x, x∗) ≤
α} if and only if α ≥ I ∗

A(x∗). Thus, I∗
A(x∗) may be determined by the minimal

half-space containing A. In other words, if the linear function x → (x, x∗) reaches
its maximum on A, then (x, x∗) = I ∗

A(x∗) represents the equation of a supporting
hyperplane of A.

Let A◦ be the polar of A, that is,

A◦ = {x∗ ∈ X∗; (x, x∗) ≤ 1, ∀x ∈ A
}
. (2.19)

In terms of I∗
A defined above, the polar of A may be expressed as

A◦ = {x∗ ∈ X∗; I ∗
A(x∗) ≤ 1

}
. (2.20)

We observe that, if A = C is a cone with vertex in 0, then the polar set C◦ is again
a cone with vertex in 0, which is given by

C◦ = {x∗ ∈ X∗; (x, x∗) ≤ 0, ∀x ∈ C
}

(2.21)

and is called the dual cone of C.
If A = Y is a linear subspace of X, then

Y ◦ = {x∗ ∈ X∗; (x, x∗) = 0, ∀x ∈ Y
}

(2.22)

is also a linear subspace, called the orthogonal of the space Y , sometimes denoted
by Y⊥.

As is readily seen, the polar A◦ of a subset A is a closed convex subset which
contains the origin. If we take into account (2.20) and Corollary 1.23, the question



2.1 General Properties of Convex Functions 77

arises whether I∗
A is a Minkowski functional associated with the subset A◦. In gen-

eral, the answer is negative. However, we have

pA◦(x∗) = max
{
I ∗
A(x∗),0

}
, ∀x∗ ∈ X∗. (2.23)

Therefore, if 0 ∈ A, then I ∗
A(x∗) ≥ 0 and

pA◦ = I ∗
A. (2.24)

Furthermore,

p∗
A = IA◦ for every A ⊂ X with 0 ∈ A. (2.25)

Indeed, if x∗ ∈A◦, then there exists x̄ ∈ A such that (x∗, x̄) > 1. This implies that

p∗
A(x∗) = sup

x∈X

{
(x, x∗) − pA(x)

}≥ λ(x̄, x∗) − pA(λx̄)

= λ
[
(x̄, x∗) − pA(x̄)

]≥ λ
[
(x̄, x∗) − 1

]
, ∀λ > 0.

Hence, p∗
A(x∗) = +∞ for every x∗ ∈A◦. Now, if x∗ ∈ A◦, since for every x ∈

Dom(pA), x ∈ (pA(x) + ε)A, for all ε > 0, we have

p∗
A(x∗) = sup

{
(x, x∗) − pA(x); x ∈ Dom(pA)

}

≤ sup
a∈A

sup
x∈Dom(pA)

{
(pA(x) + ε)(a, x∗) − pA(x)

}≤ ε, ∀ε > 0.

Hence, p∗
A(x∗) ≤ 0. Because 0 ∈ Dom(pA), we may infer that p∗

A(x∗) ≥ 0, which
completely proves relation (2.25).

Proposition 2.19 contains some elementary facts concerning conjugacy relations.

Proposition 2.19 Let f : X →R be any function on X. Then

(i) The functions f ∗ and f ∗∗ are always convex and lower-semicontinuous in the
weak-star topology of X∗ and in the weak topology of X, respectively.

(ii) f ∗∗ ≤ f .
(iii) f (n)∗ = f ∗ or f (n) = f ∗∗ depending on whether n is odd or even.
(iv) f1 ≤ f2 implies that f ∗

1 ≥ f ∗
2 .

Proof We observe that f ∗ is the supremum of a family of convex and weak-star
continuous functions on X∗. Similarly, relation (2.15) shows that f ∗∗ is the supre-
mum of a family of convex and weakly continuous functions on X. Thus, we obtain
part (i) as an immediate consequence of Corollary 2.6.

As already mentioned, it follows from relation (2.14) that

(x, x∗) − f ∗(x∗) ≤ f (x) for all x ∈ X, x∗ ∈ X∗,

which clearly implies that f ∗∗ ≤ f , as claimed. Part (iv) is immediate, and therefore
its proof is omitted. To prove part (iii), it suffices to show that f ∗∗∗ = f ∗. In fact,
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it follows from part (ii) that f ∗∗∗ ≤ f ∗, while part (iv) implies that f ∗ ≤ f ∗∗∗, as
claimed.

We observe from the definition of f ∗ that, if the function f is not proper, that is,
if f takes on −∞ or it is identically +∞, then its conjugate is also not proper. Fur-
thermore, the conjugate f ∗ may not be proper on X∗ though f is proper on X. This
is the reason for saying that a function admits conjugate if its conjugate is proper.
In particular, it follows from Proposition 2.19 that, if f admits a conjugate, then it
admits conjugate of every order. We shall see later that a lower-semicontinuous con-
vex function is proper if and only if it admits conjugate. This assertion will follow
from the Proposition 2.20 below. �

Proposition 2.20 Any convex, proper and lower-semicontinuous function is
bounded from below by an affine function.

Proof Let f : X → ]−∞,+∞] be any convex and lower-semicontinuous function
on X, f �≡ +∞. As already seen, the epigraph epif of f is a proper convex and
closed subset of product space X ×R. If x0 ∈ Dom(f ), then (x0, f (x0)− ε)∈ epif
for every ε > 0. Thus, using the Hahn–Banach theorem (see Corollary 1.45), there
exists u ∈ (X ×R)∗ such that

sup
(x,t)∈epif

u(x, t) < u
(
x0, f (x0) − ε

)
.

Identifying the dual space (X × R)∗ with X∗ × R, we may infer that there exist
x∗

0 ∈ X∗ and α ∈R, not both zero, such that

sup
(x,t)∈epif

{
x∗

0 (x) + tα
}

< x∗
0 (x0) + α

(
f (x0) − ε

)
.

We observe that α �= 0 and must be negative, since (x0, f (x0)+n) ∈ epif for every
n ∈N. On the other hand, (x, f (x)) ∈ epif for every x ∈ Dom(f ). Thus,

x∗
0 (x) + αf (x) ≤ x∗

0 (x0) + αf (x0), ∀x ∈ Dom(f ),

or

f (x) ≥ − 1

α
x∗

0 (x) + 1

α
x∗

0 (x0) + f (x0), ∀x ∈ Dom(f ),

but the function in the right-hand side is affine, as claimed. �

Corollary 2.21 A lower-semicontinuous convex function is proper if and only if its
conjugate is proper.

Proof If the function f : X → ]−∞,+∞] is convex lower-semicontinuous and
nonidentically +∞, then relation (2.14) and Proposition 2.20 show that f ∗ �≡ +∞
and f ∗(x∗) > −∞ for every x∗ ∈ X∗. Next, we assume that f ∗ is proper on X∗.
Then, inequality (2.16) implies that f is nowhere −∞ on X while relation (2.14)
shows that f must be nonidentically +∞. �
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Now, we establish a central result of Convex Analysis which is known in the
literature as the biconjugate theorem.

Theorem 2.22 Let f : X → ]−∞,+∞] be any function nonidentically +∞. Then
f ∗∗ = f if and only if f is convex and lower-semicontinuous on X.

Proof If f = f ∗∗, then Proposition 2.19 implies that f is convex and lower-
semicontinuous. Now, we assume that f is proper, convex and lower-semicontinuous
on X. Since the conjugate f ∗ of f is proper, using Corollary 2.21, we may
infer that f ∗∗ > −∞ everywhere on X. Moreover, Proposition 2.19(ii) implies
that f ∗∗(x) ≤ f (x), for every x ∈ X. Suppose that there exists x0 ∈ X such that
f ∗∗(x0) < f (x0) and we argue from this to a contradiction. Thus, (x0, f

∗∗(x0))∈
epif , so that, using the same reasoning as in the proof of Proposition 2.20, we may
conclude that there exist x∗

0 ∈ X∗ and α ∈R such that

x∗
0 (x0) + αf ∗∗(x0) > sup

{
x∗

0 (x) + αt; (x, t) ∈ epif
}
. (2.26)

Since (x, t + n) ∈ epif for every n ∈ N and (x, t) ∈ epif , relation (2.26) implies
that α ≤ 0. Furthermore, α must be negative. Indeed, otherwise (that is, α = 0),
inequality (2.26) implies that

x∗
0 (x0) > sup

{
x∗

0 (x); x ∈ Dom(f )
}
. (2.27)

Let h > 0 and y∗
0 ∈ Dom(f ∗) be arbitrarily chosen. (We recall that Dom(f ∗) �= ∅

because f ∗ is proper.) One obtains

f ∗(y∗
0 + hx∗

0 ) = sup
{
(x, y∗

0 ) + h(x, x∗
0 ) − f (x); x ∈ Dom(f )

}

≤ sup
{
(x, y∗

0 ) − f (x); x ∈ Dom(f )
}

+ h sup
{
(x∗

0 , x); x ∈ Dom(f )
}

= f ∗(y∗
0 ) + h sup

{
(x∗

0 , x); x ∈ Dom(f )
}
.

On the other hand, a simple calculation involving the latter expression and inequa-
lity (2.17) yields

f ∗∗(x0) ≥ (y∗
0 + hx∗

0 , x0) − f ∗(y∗
0 + hx∗

0 )

≥ (y∗
0 , x0) − f ∗(y∗

0 ) + h
[
(x∗

0 , x0) − sup
{
(x∗

0 , x); x ∈ Dom(f )
}]

.

Comparing this inequality with (2.27) and letting h → +∞, we obtain f ∗∗(x0) =
+∞, which is absurd. Therefore, α is necessarily negative. Thus, we may divide
inequality (2.26) by −α to obtain

x∗
0

(

−x0

α

)

− f ∗∗(x0) > sup

{

x∗
0

(

−x

α

)

− t; (x, t) ∈ epif

}

= sup

{(

− 1

α
x∗

0 , x

)

− f (x); x ∈ Dom(f )

}

= f ∗
(

− 1

α
x∗

0

)

.
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But this inequality obviously contradicts inequality (2.17). Hence, f ∗∗(x0) = f (x0)

for every x0 ∈ Dom(f ∗∗). Since f ∗∗(x) = f (x), for all x ∈ Dom(f ∗∗), it results
that f ∗∗(x) = f (x) for all x ∈ X. Thus, the proof is complete. �

More generally, if f is not lower-semicontinuous, then f ∗∗ = clf . Thus, we
obtain the following corollary.

Corollary 2.23 The biconjugate of a convex function f coincides with its closure,
that is, f ∗∗ = clf .

Proof It is clear that clf is lower-semicontinuous if it is proper and, therefore,
(clf )∗∗ = clf as a consequence of Theorem 2.22. But as has already been men-
tioned, f ∗ = (clf )∗, which shows that f ∗∗ = clf , as claimed. If clf is not proper,
the result is immediately clear, since f ∗∗ = (clf )∗∗ = clf ≡ −∞. �

Corollary 2.24 A proper function f is convex and lower-semicontinuous on X if
and only if it is the supremum of a family of affine continuous functions.

Proof If f is a proper convex and lower-semicontinuous, then f (x) = f ∗∗(x) =
sup{(x, x∗) − f ∗(x∗); x∗ ∈ D(f ∗)} for every x ∈ X, and x → (x, x∗) − f ∗(x∗) is
an affine continuous function for each x∗ ∈ Dom(f ∗), as claimed. The converse is
obvious (see Corollary 2.6). �

There is a close connection between the effective domain Dom(f ) of a lower-
semicontinuous convex function f : X → R

∗
and the growth properties of its con-

jugate f ∗ : X∗ → R
∗
.

Proposition 2.25 Assume that X is a reflexive Banach space. Then the following
two conditions are equivalent:

(i) int Dom(f ) �= ∅.
(ii) There are ρ > 0 and C > 0 such that

f ∗(p) ≥ ρ‖p‖X∗ − C, ∀p ∈ X. (2.28)

Moreover, Dom(f ) = X if and only if

lim‖p‖→∞
f ∗(p)

‖p‖ = +∞. (2.29)

Proof If int Dom(f ) �= ∅, then there is a ball B(x0, ρ) ⊂ int Dom(f ) and by Theo-
rem 2.14, f is bounded on B(x0, ρ). Then, by the duality formula (2.14), we have
(for simplicity, assume x0 = 0)

f ∗(p) ≥ ρ‖p‖X∗ − f

(

ρ
x

‖x‖X

)

≥ ρ‖p‖X∗ − C, ∀p ∈ X∗,

as claimed.
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If (ii) holds, then by (2.15) we see that

f (x) = f ∗∗(x) ≤ sup
x

{
(x, x∗) − ρ‖x∗‖X∗ − C

}≤ ∞ for ‖x‖X ≤ ρ

and therefore B(0, ρ) ⊂ Dom(f ), as claimed.
Now, if Dom(f ) = X, then by the above argument it follows that (2.28) holds

for all ρ > 0, that is, for all ρ > 0,

f ∗(p) ≥ ρ‖p‖X∗ − Cρ, ∀p ∈ X∗,

which implies that (2.29) holds. Conversely, if (2.29) holds, then, by (2.15), we see
that Dom(f ) = X, as claimed. �

Theorem 2.22 and Corollary 2.23, in particular, yield a simple proof for the well-
known bipolar theorem (Theorem 2.26 below), which plays an important role in the
duality theory.

Theorem 2.26 The bipolar A◦◦ of a subset A of X is the closed convex hull of the
origin and of A, that is,

A◦◦ = conv
(
A ∪ {0}). (2.30)

Proof Inasmuch as the polar is convex, weakly closed and contains the origin, it
suffices to show that A◦◦ = A for every convex, closed subset of X, which contains
the origin. In this case, relations (2.24) and (2.25) imply that

IA◦◦ = p∗
A◦ = I ∗∗

A = IA,

because IA is convex and lower-semicontinuous. Hence, A = A∞, as claimed. �

Remark 2.27 We notice that the conjugate correspondence f → f ∗ is one-to-one
between convex and lower-semicontinuous convex functions on X and weak-star
lower-semicontinuous convex functions on X∗. In this context, the concept of con-
jugate defined above seems to be more suitable for convex functions.

For concave functions, it is more natural to introduce a concept of conju-
gate which preserves the concavity and upper-semicontinuity. Given any function
g : x →R, the function g∗ : X∗ →R defined by

g∗(x) = inf
{
(x, x∗) − g(x); x ∈ X

}
, (2.31)

is called the concave conjugate function of g. We observe that the concave conjugate
g∗ of a function g can be equivalently expressed with the aid of convex conjugate
defined by relation (2.14) as it follows that

g∗(x∗) = −(−g)∗(−x∗) for every x∗ ∈ X∗,

where the conjugate in the right-hand side is in the convex sense.
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In general, facts and definitions for concave conjugate functions are obtained
from those above by interchanging ≤ with ≥, +∞ with −∞ and infimum with
supremum wherever these occur. Typically, we consider the concave conjugate for
concave functions and the conjugate for convex functions.

Remark 2.28 Let f be a convex function on a linear normed space X and let
f ∗ : X∗ →R be the conjugate function of f . Let (f ∗)∗;X∗∗ → R be the conjugate
of f ∗ defined on the bidual X∗∗ of X. It is natural also to call (f ∗)∗ the biconju-
gate of f and, if X is reflexive, obviously (f ∗)∗ coincides with f ∗∗. In general, the
restriction of (f ∗)∗ to X (when X is regarded in the canonical way as the linear
subspace of X∗∗) coincides with f ∗∗.

Remark 2.29 The theory of conjugate functions can be developed in a context more
general than that of the linear locally convex space. Specifically, let X and Y be
arbitrary real linear spaces paired by a bilinear functional (·, ·) and let X and Y be
endowed with compatible topologies with respect to this pairing. Let f : X →R be
any extended real-valued function on X. Then the function f ∗ on Y defined by

f ∗(y) = sup
{
(x, y) − f (x); x ∈ X

}
, y ∈ Y, (2.32)

is called the conjugate of f (with respect to the given pairing). A closer examination
of the proofs shows that the above results on conjugate functions are still valid in
this general framework.

2.2 The Subdifferential of a Convex Function

The subdifferential of a convex is a basic concept for convex analysis and it will be
developed in detail in this section.

2.2.1 Definition and Fundamental Results

Throughout this section, X denote a real Banach space with dual X∗ and norm ‖ · ‖.
As usually, (·, ·) denote the canonical pairing between X and X∗.

Definition 2.30 Given the proper convex function f : X → ]−∞,+∞], the subd-
ifferential of such a function is the (generally multivalued) mapping ∂f : X → X∗
defined by

∂f (x) = {x∗ ∈ X∗; f (x) − f (u) ≤ (x − u,x∗), ∀u ∈ X
}
. (2.33)

The elements x∗ ∈ ∂f (x) are called subgradients of f at x.
It is clear from relation (2.33) that ∂f (x) is always a closed convex subset of X∗.

The set ∂f (x) may well be empty as happens, e.g., if f (x) = +∞ and f �≡ +∞.
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The set of those x for which ∂f (x) �= ∅ is called the domain of ∂f and is denoted
by D(∂f ). Clearly, if f is not the constant +∞, D(∂f ) is a subset of Dom(f ). The
function f is said to be subdifferentiable at x, if x ∈ D(∂f ).

Example 2.31 Let K be a closed convex subset of X. The normal cone NK(x) to K

at a point x ∈ K consists, by definition, of all the normal vectors to half-spaces that
support K at x, that is,

NK(x) = {x∗ ∈ X∗; (x∗, x − u) ≥ 0 for all u ∈ K
}
.

This is a closed convex cone containing the origin and, in terms of the indicator
function IK of K , we can write it as

NK(x) = ∂IK(x), x ∈ K.

Clearly, D(∂IK) = K and ∂IK(x) = {0} when x ∈ intK . In particular, if K is a
linear subspace of X, then ∂IK(x) = K⊥ for all x ∈ K (K⊥ is the subspace of X∗
orthogonal to K).

Example 2.32 Let f (x) = 1
2 ‖x‖2. Then, f is a convex continuous function on X.

Furthermore, f is everywhere subdifferentiable on X and the subdifferential ∂f

coincides with the duality mapping F : X → X∗ (see Definition 1.99). Indeed, if
x∗ ∈ F(x), then, by the definition of F , one has

(x − u,x∗) = ‖x‖2 − (u, x∗) ≥ ‖x‖2 − ‖u‖‖x‖
≥ 1

2

(‖x‖2 − ‖u‖2), for every u ∈ X.

In other words, x∗ ∈ ∂f (x). Conversely, suppose that x∗ ∈ ∂f (x). Hence,

(x − u,x∗) ≥ 1

2

(‖x‖2 − ‖u‖2), ∀u ∈ X.

Taking in the latter inequality u = x + λv, where λ ∈ R
+ and v ∈ X, we see that

−λ(v, x∗) ≥ −1

2

(
2λ‖x‖‖v‖ + λ2‖v‖2).

Therefore
∣
∣(v, x∗)

∣
∣≤ ‖v‖‖x‖, ∀v ∈ X.

Furthermore, we take u = (1 − λ)x, divide by λ and let λ ↘ 0; we get

(x, x∗) ≥ ‖x‖2.

Combining these inequalities, we obtain

(x, x∗) = ‖x‖2 = ‖x∗‖2.

Thus, we have shown that x∗ ∈ F(x), as claimed.
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In the general theory of convex optimization, the following trivial consequence
of Definition 2.30 plays an important role.

If f is a proper convex function on X, then the minimum (global) of f over X

is attained at the point x ∈ X if and only if 0 ∈ ∂f (x).
It must be observed that, if f is strictly convex, then for every x∗ ∈ X∗ the func-

tion f (x)−(x, x∗) attains its minimum in at most one point x = (∂f )−1(x∗). Hence,
in this case, the map (∂f )−1 is single valued.

To make use of this minimum (necessary and sufficient condition), it is necessary
to calculate the subdifferentials of certain convex functions; this can be easy or
difficult, depending on the nature and the complexity of the given function. It is
found as a result that, if f is lower-semicontinuous, the subdifferential ∂f ∗ of the
conjugate function f ∗ coincides with (∂f )−1. More precisely, one has the following
proposition.

Proposition 2.33 Let f : X → ]−∞,+∞] be a proper convex function. Then, the
following three properties are equivalent:

(i) x∗ ∈ ∂f (x).
(ii) f (x) + f ∗(x∗) ≤ (x, x∗).

(iii) f (x) + f ∗(x∗) = (x, x∗).

If, in addition, f is lower-semicontinuous, then all of these properties are equivalent
to the following one.

(iv) x ∈ ∂f ∗(x∗).

Proof The Young inequality (relation (2.16)) shows that (i) and (iii) are equivalent.
If statement (iii) holds, then, using again the Young inequality, we find that

f (u) − f (x) ≥ (u − x, x∗), ∀u ∈ X,

that is, x∗ ∈ ∂f (x). Using a similar argument, it follows that (i) implies (iii). Thus,
we have shown that (i), (ii) and (iii) are equivalent. Now, we assume that f is a
lower-semicontinuous, proper convex function on X. Since statements (i) and (iii)
are equivalent for f ∗, relation (iv) can be equivalently expressed as

f ∗(x∗) + (f ∗)∗(x) = (x, x∗), (2.34)

where (f ∗)∗ : X∗∗ → ]−∞,+∞] is the conjugate function of f ∗. As mentioned in
Sect. 2.1.4, the restriction of (f ∗)∗ to X (which, from the canonical viewpoint, is
regarded as a subspace of X∗∗) is f ∗∗ and the latter coincides with f (see Theo-
rem 2.22). Thus, (iii) and (iv) are equivalent. This completes the proof of Proposi-
tion 2.33. �

Remark 2.34 Since the set of all minimum points of the function f coincides with
the set of solutions x of the equation 0 ∈ ∂f (x), Proposition 2.33 implies that in the
lower-semicontinuous case, a function f attains its infimum on X if and only if its
conjugate function f ∗ is subdifferentiable at the origin, that is, ∂f ∗(0) ∩ X∗ �= ∅.
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Remark 2.35 If the space X is reflexive, then it follows from Proposition 2.33 that
∂f ∗ : X∗ → X∗∗ = X is just the inverse of ∂f , in other words,

x ∈ ∂f ∗(x∗) ⇐⇒ x∗ ∈ ∂f (x). (2.35)

If X is not reflexive, ∂f ∗ is a (multivalued) mapping from X∗ to the bidual X∗∗,
which strictly contains X, and the relation between ∂f and ∂f ∗ is more complicated
(see, for example, Rockafellar [59]).

Proposition 2.36 If the convex function f : X → ]−∞,+∞] is (finite and) contin-
uous at x0, then f is subdifferentiable at this point, that is, x0 ∈ D(∂f ).

Proof Let us denote by H the epigraph of the function f , that is,

H = {(x,λ) ∈ X ×R; f (x) ≤ λ
}
.

H is a convex subset of X ×R and (x0, f (x0)+ ε) ∈ intH for every ε > 0, because
f is continuous at x0. We denote by H the closure of H and observe that (x0, f (x0))

is a boundary point of H . Thus, there exists a closed supporting hyperplane of H

which passes through (x0, f (x0)) (see Theorem 1.38). In other words, there exist
x∗

0 ∈ X∗ and α0 ∈R
+, such that

α0
(
f (x0) − f (x)

)≤ (x0 − x, x∗
0 ) for every x ∈ Dom(f ). (2.36)

It should be observed that α0 �= 0 (that is, the hyperplane is not vertical) because,
otherwise, (x0 − x, x∗

0 ) = 0 for all x in Dom(f ), which is a neighborhood of x0.
But this would imply that x∗

0 = 0, which is not possible. However, inequality (2.36)

shows that
x∗

0
α0

is a subgradient of f at x0, thereby proving Proposition 2.36. �

Remark 2.37 From the above proof, it follows that a proper convex function f is
subdifferentiable in an element x0 ∈ Dom(f ) if and only if there exists a nonvertical
closed support hyperplane of the epigraph passing through (x0, f (x0)).

Corollary 2.38 Let f be a lower-semicontinuous proper convex function on a Ba-
nach space X. Then

int Dom(f ) ⊂ D(∂f ). (2.37)

Proof We have seen in Sect. 2.1.3 (Proposition 2.16) that f is continuous at every
interior point of its effective domain Dom(f ). Thus, relation (2.37) is an immediate
consequence of Proposition 2.36.

The question of when a convex function is subdifferentiable at a given point is
connected with the properties of the directional derivative at this point. Also, we
shall see later that the subdifferential of a convex function is closely related to other
classical concepts, such as the Gâteaux (or Fréchet) derivative.

First, we review the definition and some basic facts about directional and weak
derivatives.
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Let f be an proper convex function on X. If f is finite at the point x, then, for
every h ∈ X, the difference quotient λ → λ−1(f (x + λh) − f (x)) is monotonically
increasing on ]0,∞[. Thus, the directional derivative at x in the direction h

f ′(x,h) = lim
λ↓0

λ−1(f (x + λh) − f (x)
)= inf

λ>0
λ−1(f (x + λh) − f (x)

)
(2.38)

exists for every h ∈ X. The function h → f ′(x,h) is called the directional differen-
tial of f at x. It is immediate from the definition that for fixed x ∈ Dom(f ), f ′(x,h)

is a positively homogeneous subadditive function on X. The function f is said to be
weakly or Gâteaux differentiable at x if h → f ′(x,h) is a linear continuous function
on X. In particular, this implies that

−f ′(x,−h) = f ′(x,h) = lim
λ→0

λ−1(f (x + λh) − f (x)
)

for every h ∈ X. If f is weakly differentiable at x, then we denote by ∇f (x) or
gradf (x) (the gradient of f at x) the element of X∗ defined by

f ′(x,h) = (h,gradf (x)
)

for every h ∈ X.

The function f is said to be Fréchet differentiable at x if the difference quotients
in (2.38) as a function of h converges uniformly on every bounded set. �

Proposition 2.39 Let f : X → ]−∞,+∞] be a proper convex function. If f is
finite and continuous at x0, then

f ′(x0, h) = sup
{
(h, x∗); x∗ ∈ ∂f (x0)

}
(2.39)

and, in general, one has

∂f (x0) = {x∗ ∈ X; (h, x∗) ≤ f ′(x0, h), ∀h ∈ X
}
. (2.40)

Proof Since (2.40) is immediate from the definition of ∂f and (2.38), we confine
ourselves to prove (2.39). For the sake of simplicity, we denote by f0 the function
f0(h) = f ′(x0, h), ∀h ∈ X. Inasmuch as f is continuous at x0, the inequality

(h,w) ≤ f0(h) ≤ f (x0 + h) − f (x0), ∀w ∈ ∂f (x0)

implies that f0 is everywhere finite and continuous on X. Furthermore, a simple
calculation involving the definition of conjugate (see relation (2.14)) shows that
the conjugate of the function x → λ−1(f (x0 + λx) − f (x0)) is just the function
x∗ → λ−1(f ∗(x∗) + f (x0) − (x0, x

∗)). Therefore,

f ∗
0 (x∗) = sup

λ>0
λ−1(f (x0) + f ∗(x∗) − (x0, x

∗)
)
,

because

f0(h) = inf
λ>0

λ−1(f (x0 + λh) − f (x0)
)
.
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According to Proposition 2.33, one has

∂f (x0) = {x∗ ∈ X∗; f (x0) + f ∗(x∗) − (x0, x
∗) = 0

}

and, therefore,

f ∗
0 (x∗) =

{
0, if x∗ ∈ ∂f (x0),

+∞, otherwise.

Thus, f ∗∗
0 = f0 is the support functional of the closed convex set ∂f (x0) ⊂ X∗.

This, clearly, implies relation (2.39), thereby proving Proposition 2.39.
If ∂f (x0) happens to consist of a single element, Proposition 2.39 says that

f ′(x0, h) can be written as

f ′(x0, h) = (h, ∂f (x0)
)

for every h ∈ X.

In particular, this implies that f is Gâteaux differentiable at x0 and gradf (x0) =
∂f (x0). It follows that the converse result is also true. �

Namely,

Proposition 2.40 If the convex function f is Gâteaux differentiable at x0, then
∂f (x0) consists of a single element x∗

0 = gradf (x0). Conversely, if f is continu-
ous at x0 and if ∂f (x0) contains a single element, then f is Gâteaux differentiable
at x0 and gradf (x0) = ∂f (x0).

Proof Suppose that f is Gâteaux differentiable at x0, that is,
(
h,gradf (x0)

)= lim
λ→0

λ−1(f (x0 + λh) − f (x0)
)
, ∀h ∈ X.

However,

λ−1(f (x0 + λh) − f (x0)
)≤ f (x0 + h) − f (x0) for λ ∈ ]0,1[

because f is convex. This implies that

f (x0) − f (x0 + h) ≤ −(h,gradf (x0)
)

for all h ∈ X,

that is, gradf (x0) ∈ ∂f (x0). Now, let x∗
0 be any element of ∂f (x0). We have

f (x0) − f (u) ≤ (x0 − u,x∗
0 ), ∀u ∈ X,

and, therefore,

λ−1(f (x0 + λh) − f (x0)
)≥ (h, x∗

0 ) for every λ > 0.

This show that (gradf (x0) − x∗
0 , h) ≥ 0 for all h ∈ X, that is, x∗

0 = gradf (x0). We
conclude the proof by noting that the second part of Proposition 2.40 has already
been proven by the above remarks. �
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Remark 2.41 Let f be a continuous convex function on X. If f ∗ is strictly convex,
then, as noticed earlier, (∂f ∗)−1 = ∂f is single valued. Then, by Proposition 2.40,
f is Gâteaux differentiable. In particular, if f (x) = 1

2 ‖x‖2, this fact leads to a well-
known result in the metric theory of normed spaces. (See Theorem 1.101.) Namely,
if the dual X∗ of X is strictly convex, then X is itself smooth.

Remark 2.42 If g is a concave function on X, then, by definition its subdifferential
is ∂g = −∂(−g). In other words, x∗ ∈ ∂g(x) if and only if

g(x) − g(u) ≥ (x − u,x∗) for every u ∈ X.

2.2.2 Further Properties of Subdifferential Mappings

It is apparent from Definition 2.30 that every subdifferential mapping ∂f : X → X∗
is monotone in X × X∗. In other words,

(x1 − x2, x
∗
1 − x∗

2 ) ≥ 0 for x∗
i ∈ ∂f (xi), i = 1,2. (2.41)

The theorem below ensures us that any subdifferential mapping is maximal mono-
tone.

Theorem 2.43 (Rockafellar) Let X be a real Banach space and let f be a lower-
semicontinuous proper convex function on X. Then, ∂f is a maximal monotone op-
erator from X to X∗.

Proof In order to avoid making the treatment too ponderous, we confine ourselves
to proving the theorem in the case in which X is reflexive. We refer the reader to
Rockafellar’s work [59] for the proof in a general context. Then, using the renorming
theorem, we may assume without any loss of generality that X and X∗ are strictly
convex Banach spaces. Using Theorem 1.141, the maximal monotonicity of ∂f is
equivalent to R(F + ∂f ) = X∗, where, as usual, F : X → X∗ stands for the duality
mapping of X. Let x∗

0 be any fixed element of X∗. We must show that the equation

F(x) + ∂f (x) � x∗
0 ,

has at least one solution x0 ∈ D(∂f ). To this end, we define

f1(x) = ‖x‖2

2
+ f (x) − (x, x∗

0 ) for every x ∈ X.

Clearly, f1 : X → ]−∞,+∞] is convex and lower-semicontinuous on X. More-
over, since f is bounded from below by an affine function, we may infer that

lim‖x‖→+∞ f1(x) = +∞.
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Thus, using Theorem 2.11 (see Remark 2.13), the infimum of f1 on X is attained.
In other words, there is x0 ∈ Dom(f ) such that

f1(x0) ≤ f1(x) for every x ∈ X.

We write this inequality in the form

f (x0) − f (x) ≤ (x0 − x, x∗
0 ) + (x − x0,F (x)

)
for every x ∈ X

and set x = tx0 + (1 − t)u, where t ∈ [0,1], and u is any element of X. Since the
function f is convex, one obtains

f (x0) − f (u) ≤ (x0 − u,x∗
0 ) + (u − x0,F

(
tx0 + (1 − t)u

))
.

Passing to limit t → 1, we obtain

f (x0) − f (u) ≤ (x0 − u,x∗
0 ) + (u − x0,F (x0)

)

because F is demicontinuous from X to X∗ (see Theorem 1.106). Since u was
arbitrary, we may conclude that

x∗
0 − F(x0) ∈ ∂f (x0),

as we wanted to prove. �

Corollary 2.44 Let f : X → ]−∞,+∞] be a lower-semicontinuous proper and
convex function on X. Then D(∂f ) is a dense subset of Dom(f ).

Proof For simplicity, we assume that X is reflexive. Let x be any element of
Dom(f ). Then, Theorem 1.141 and Corollary 1.140 imply that, for every λ > 0,
the equation

F(xλ − x) + λ∂f (xλ) � 0 (2.42)

has a unique solution xλ ∈ D(∂f ). By the definition of ∂f , we see that, multiplying
equation (2.42) by xλ − x, we obtain

‖xλ − x‖2 + λf (xλ) ≤ λf (x)

and therefore

lim
λ→0

‖xλ − x‖ = 0,

because f is bounded from below by an affine function. Therefore, x ∈ D(∂f ) and
the corollary has been proved. �

It is well known that not every monotone operator arises from a convex function.
For instance (see Proposition 2.51 below), a positive linear operator acting in a real
Hilbert space is the subdifferential of a proper convex function on H if and only if
it is self-adjoint. Thus, we should look for properties which should characterize the
maximal monotone operators which are subdifferentials.
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Definition 2.45 The operator (multivalued) A : X → X∗ is said to be cyclically
monotone if

(x0 − x1, x
∗
0 ) + · · · + (xn−1 − xn, x

∗
n−1) + (xn − x0, x

∗
n) ≥ 0, (2.43)

for every finite set of points in the graph of A, that is, x∗
i ∈ Axi for i = 0,1, . . . , n.

The operator A is said to be maximal cyclically monotone if it is cyclically monotone
and has no cyclically monotone extension in X × X∗.

Obviously, every cyclically monotone operator is also monotone. If f is a proper
convex function on X, then a simple calculation involving the definition of ∂f shows
that the operator ∂f is cyclically monotone. Moreover, it follows from Theorem 2.43
that, if f is in addition lower-semicontinuous on X, then its subdifferential ∂f is
cyclically maximal monotone. Surprisingly, it turns out that condition (2.43) is both
necessary and sufficient for an operator A to be the subdifferential of some proper
convex function. The next theorem is more precise.

Theorem 2.46 Let X be a real Banach space and let A be an operator from X to
X∗. In order that a lower-semicontinuous proper convex function f on X exists such
that A = ∂f , it is necessary and sufficient that A be a maximal cyclically monotone
operator. Moreover, in this case, A determines f uniquely up to an additive constant.

Proof The necessity of the condition was proved in the above remarks. To prove the
sufficiency, we suppose therefore that A is maximal cyclically monotone in X ×X∗.
We fix [x0, x

∗
0 ] in A. For every x ∈ X, let

f (x) = sup
{
(x − xn, x

∗
n) + · · · + (x1 − x0, x

∗
0 )
}
,

where x∗
i ∈ Axi for i = 1, . . . , n and the supremum is taken over all possible finite

sets of pairs [xi, x
∗
i ] ∈ A. We shall prove that A = ∂f . Clearly, f (x) > −∞ for all

x ∈ X. Note also that f is convex and lower-semicontinuous on X. Furthermore,
f (x0) = 0 because A is cyclically monotone. Hence, f �≡ +∞. Now, choose any x̃

and x̃∗ with x̃∗ ∈ Ax̃. To prove that [x̃, x̃∗] ∈ ∂f , it suffices to show that, for every
λ < f (x̃), we have

f (x) ≥ λ + (x − x̃, x̃∗) for all x ∈ X. (2.44)

Let λ < f (x̃). Then, by the definition of f there exist the pairs [xi, x
∗
i ] ∈ A, i =

1, . . . ,m, such that

λ < (x̃ − xm,x∗
m) + · · · + (x1 − x0, x

∗
0 ).

Let xm+1 = x̃ and x∗
m+1 = x̃∗. Then, again by the definition of f , one has

f (x) ≥ (x − xm+1, x
∗
m+1) + (xm+1 − xm,x∗

m) + · · · + (x1 − x0, x
∗
0 ),

for all x ∈ X, which implies inequality (2.44).
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By the arbitrariness of [x̃, x̃∗] ∈ A, we conclude that A ⊂ ∂f . Since A is maximal
in the class of cyclical sets of X ×X∗, it follows that A = ∂f , as claimed. It remains
to be shown that f is uniquely determined up to an additive constant. This fact will
be shown later (see Corollary 2.60 below). �

As mentioned earlier (see Theorem 1.143 and Corollary 1.140), if a maximal
monotone operator A : X → X∗ is coercive, then its range is all of X∗. We would
like to know more about A−1 in the case in which A is cyclically maximal mono-
tone. This information is contained in the following proposition.

Proposition 2.47 Let X be reflexive and A = ∂f , where f : X → ]−∞,+∞] is
a lower-semicontinuous proper convex function. Then, the following conditions are
equivalent.

lim‖x‖→+∞
f (x)

‖x‖ = +∞, (2.45)

R(A) = X∗ and A−1 is bounded on bounded subsets. (2.46)

Proof 1°. (2.45)⇒(2.46). Let x0 be arbitrary, but fixed in D(A). By the definition
of ∂f , one has

(
∂f (x), x − x0

)≥ f (x) − f (x0) for any x ∈ D(A)

and therefore

lim
‖x‖→∞
[x,y]∈A

(x − x0, y)

‖x‖ = +∞.

Thus, Corollary 1.140 quoted above implies that R(A) = X∗. Moreover, it is readily
seen that the operator A−1 is bounded on every bounded subset of X∗.

2°. (2.46)⇒(2.45). Inasmuch as f is bounded from below by an affine function,
no loss of generality results in assuming that f ≥ 0 on X. Let r > 0. Then, for every
z ∈ X∗, ‖z‖ ≤ r , v ∈ D(A) and C > 0 such that

z ∈ Av, ‖v‖ ≤ C.

Next, by

f (u) − f (v) ≥ (u − v, z) for all u in X,

it follows that (u, z) ≤ f (u) + Cr for any u ∈ Dom(f ) and z in X with ‖z‖ ≤ r .
Hence,

f (u) + Cr ≥ r‖u‖,
or

f (u)

‖u‖ ≥ r − Cr

‖u‖ for all u ∈ X.

This shows that condition (2.45) is satisfied, thereby completing the proof. �
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Remark 2.48 A convex function f satisfying condition (2.45) is called cofinite
on X. Recalling that (∂f )−1 is just the subdifferential ∂f ∗ of the conjugate func-
tion f ∗ (see Proposition 2.33). Proposition 2.47 says that a lower-semicontinuous
proper convex function f is cofinite on X if and only if its conjugate f ∗ is every-
where finite and ∂f ∗ is bounded on every bounded subset of X∗. In particular, if
X = R, then condition (2.46) and Dom(f ∗) = R are equivalent. Thus, in this case,
a lower-semicontinuous convex function f is cofinite if and only if f ∗ �= +∞ ev-
erywhere on X∗.

We conclude this section with some examples of cyclically monotone operators.

Example 2.49 (Maximal monotone graphs in R × R) Every maximal monotone
graph in R

2 is cyclically monotone. Indeed, let β be a maximal monotone graph
in R × R. We prove that there exists a lower-semicontinuous convex function
j : R → ]−∞,+∞] such that ∂j = β . Indeed, there exist −∞ ≤ a ≤ b ≤ +∞
such that ]a, b[⊂ Dom(β) ⊂ [a, b]. Let β◦ : Dom(β) → R be the minimal sec-
tion of β , that is, |β◦(r)| = inf{|w|; w ∈ β(r)} (see Sect. 1.4.1). Clearly, the
function β◦ is single valued, monotonically increasing and, for each r ∈ ]a, b[,
β(r) = [β◦(r − 0), β◦(r + 0)] while β(a) = ]−∞, β◦(a + 0)] if a ∈ Dom(β) and
β(b) = [β◦(b − 0),+∞[ if b ∈ Dom(β) (this is an immediate consequence of the
maximality).

Now, let r0 be fixed in Dom(β) and define the function j :R→ ]−∞,+∞]

j (r) =
{∫ t

r0
β◦(s)ds, if r ∈ [a, b],

+∞, if r ∈[a, b].
Then, we have

j (r) − j (t) ≤
∫ r

t

β◦(s)ds ≤ ξ(r − t),

for all r ∈ Dom(β), t ∈ R and ξ ∈ β(r). Hence, β(r) ∈ ∂j (r) for all r ∈ Dom(β).
We have therefore proved that β = ∂j .

By Corollary 2.60 below, the function j is uniquely defined up to an additive
constant.

Example 2.50 (Self-adjoint operators in Hilbert spaces) Let H be a real Hilbert
space whose norm and inner product are denoted | · | and (·, ·), respectively. Let A

be a single-valued, linear and densely defined maximal monotone operator in H .

Proposition 2.51 A is cyclically maximal monotone if and only if it is self-adjoint.
Moreover, in this case, A = ∂f , where

f (x) =
{

1
2 |A 1

2 x|2, if x ∈ D(A
1
2 ),

+∞, otherwise.
(2.47)
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Proof First, suppose that A is self-adjoint. Then, f defined by (2.47) (A
1
2 denotes

the square-root of the operator A) is convex and lower-semicontinuous on H

(because A
1
2 is closed). Let x ∈ D(A). We have

1

2

∣
∣A

1
2 x
∣
∣2 − 1

2

∣
∣A

1
2 u
∣
∣2 ≤ (Ax,x − u), for all u ∈ D

(
A

1
2
)
,

because (Ax,u) = (A
1
2 x,A

1
2 u) for all x in D(A) and u ∈ D(A

1
2 ). Hence, A ⊂ ∂f .

On the other hand, it follows by a standard device that A is maximal, that is,
R(I + A) = H . (One proves that R(I + A) is simultaneously closed and dense
in H .) We may conclude, therefore, that A = ∂f .

Suppose now that A is cyclically maximal monotone. According to Theo-
rem 2.46, there exists f : H → ]−∞,+∞] convex and lower-semicontinuous,
such that A = ∂f . Inasmuch as A0 = 0, we may choose the function f such that
f (0) = 0. Let g(t) be the real-valued function on [0,1] defined by

g(t) − f (tu),

where u ∈ D(A). By the definition of the subgradient, we have

g(t) − g(s) ≤ (t − s)t (Au,u) for t, s ∈ [0,1].
The last inequality shows that g is absolutely continuous on [0,1] and d

dt
g(t) =

t (Au,u) almost everywhere on this interval. By integrating the above relation on
[0,1], we obtain

f (u) = 1

2
(Au,u) for every u ∈ D(A)

and, therefore,

∂f (u) = 1

2
(Au + A∗u) for every u ∈ D(A) ∩ D(A∗).

This, clearly, implies that A = A∗, as claimed. �

Example 2.52 (Convex integrands and integral functionals) Let Ω be a Lebesgue
measurable subset of Rn and let L

p
m(Ω), 1 ≤ p < ∞, be the usual Banach space of

p-summable functions y : Ω →R
m.

A function g : Ω ×R
m → R

∗ = ]−∞,+∞] is said to be a normal convex inte-
grand on Ω ×R

m if the following conditions are satisfied:

(i) g(x, ·) : Rm →R
∗

is convex, lower-semicontinuous and �≡ +∞, a.e. x ∈ Ω .
(ii) g is measurable with respect to σ -field of subsets of Ω × R

m generated by
products of Lebesgue sets in Ω and Borel sets in R

m.

It is easy to see that, if g is a normal convex integrand on Ω × R
m, then for

every measurable function y : Ω → R
m the function x → g(x, y(x)) is Lebesgue

measurable on Ω .
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Condition (ii) extends the classical Carathéodory condition. In particular, it is
satisfied if g(x, y) is finite, measurable in x and continuous in y. If g satisfies con-
dition (i) and intD(g(x, ·)) �= ∅ a.e. x ∈ Ω , then condition (ii) is satisfied if and
only if g(x, y) is measurable with respect to x for each y ∈ R

m. The proof of this
assertion along with other sufficient conditions for normality of convex integrands
can be found in the papers [61, 63] of Rockafellar who introduced and developed
the theory of convex normal integrands (see also the survey of Ioffe and Levin [32]).

Besides (i), (ii), we assume that g satisfies the following two conditions:

(iii) g increases at least one function h on Ω ×R
m of the form

h(x, y) = (y,α(x)
)+ β(x),

where α ∈ L
p′
m (Ω), ((p′)−1 + p−1 = 1) and β ∈ L1

m(Ω).
(iv) There exists at least one function y0 ∈ L

p
m(Ω) such that g(x, y0) ∈ L1(Ω).

It must be observed that conditions (iii) and (iv) automatically hold if g is inde-
pendent of x.

For any y ∈ L
p
m(Ω), define the integral

Ig(y) =
∫

Ω

g
(
x, y(x)

)
dx. (2.48)

More precisely, the functional Ig is defined on L
p
m(Ω) by

Ig(y) =
{∫

Ω
g(x, y(x))dx, if g(x, y) ∈ L1

m(Ω),

+∞, otherwise.

Proposition 2.53 Let conditions (i), (ii), (iii) and (iv) be satisfied. Then, the func-
tion Ig : Lp

m(Ω) → R
∗
, 1 ≤ p < +∞, is convex, lower-semicontinuous and �≡ +∞.

Moreover, for every y ∈ L
p
m(Ω), the subdifferential ∂Ig(y) is given by

∂Ig(y) = {w ∈ L
p′
m (Ω); w(x) ∈ ∂g

(
x, y(x)

)
a.e. x ∈ Ω

}
. (2.49)

Proof By conditions (ii) and (iv), it follows that the integral Ig(y) is well defined
(either a real number or +∞) for every y ∈ L

p
m(Ω). The convexity of Ig is a di-

rect consequence of the convexity of g(x, ·) for every x ∈ Ω . To prove the lower-
semicontinuity of Ig , consider a sequence {yn} strongly convergent to y in L

p
m(Ω).

On a subsequence, again denoted {yn}, we have

yn(x) → y(x) a.e. x ∈ Ω

and, therefore,

g
(
x, yn(x)

)− (yn(x),α(x)
)− β(x) → g

(
x, y(x)

)− (y(x),α(x)
)− β(x)

a.e. x ∈ Ω.
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Then, by the Fatou Lemma

lim inf
n→∞ Ig(yn) ≥ Ig(y)

because lim infn→∞ g(x, yn(x)) ≥ g(x, y(x))(g(x, ·)) is lower-semicontinuous.
Now, let w ∈ ∂Ig(y). By the definition of ∂Ig(y), we have

∫

Ω

(
g
(
x, y(x)

)− g
(
x,u(x)

))
dx ≤

∫

Ω

(
w(x), y(x) − u(x)

)
dx

for all u ∈ L
p
m(Ω). Let E be any measurable subset of Ω and

ũ(x) =
{

u, if x ∈ E,

y(x), if x ∈ Ω \ E,

where u is arbitrary in R
m. We have

∫

E

(
g
(
x, y(x)

)− g(x,u) − (w(x), y(x) − u
))

dx ≤ 0.

Since E is arbitrary, we may conclude that

g
(
x, y(x)

)≤ g(x,u) + (w(x), y(x) − u
)

a.e. x ∈ Ω,

and therefore

w(x) ∈ ∂g
(
x, y(x)

)
a.e. x ∈ Ω,

as claimed. Conversely, it is easy to see that every w ∈ L
p′
m (Ω) satisfying the latter

belongs to ∂Ig(y). �

Remark 2.54 Under the assumptions of Proposition 2.53, the function Ig is weakly
lower-semicontinuous on L

p
m(Ω) (because it is convex and lower-semicontinuous).

It turns out that the convexity of g(x, ·) is also necessary for the weak lower-
semicontinuity of the function Ig (see Ioffe [29, 30]). This fact has important impli-
cations in the existence of a minimum point for Ig .

We note also that in the case p = ∞ the structure of ∂Ig(y) ∈ (L∞(Ω))∗ is
more complicated and is described in Rockafellar’s work [61]. (See, also, [32].) In
a few words, any element w ∈ ∂Ig(y) is of the form wa + ws , where wa ∈ L1(Ω),
wa(x) ∈ ∂g(x, y(x)), a.e., x ∈ Ω , and ws ∈ (L∞(Ω))∗ is a singular measure.

Now, we shall indicate an extension of Proposition 2.53 to a more general context
when R

m is replaced by an infinite-dimensional space.
Let H be a real separable Hilbert space and [0, T ] a finite interval of real axis. Let

ϕ : [0, T ] → R be such that, for every t ∈ [0, T ], the function x → ϕ(t, x) is convex,
lower-semicontinuous and �≡ +∞. Further, we assume that ϕ is measurable with
respect to the σ -field of subsets of [0, T ] × H generated by the Lebesgue sets in
[0, T ] and the Borel sets in H .
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In accordance with the terminology used earlier, we call such a function ϕ a
convex normal integrand on [0, T ] × H .

Assume, further, that there exist functions α0 ∈ Lp′
(0, T ;H), β ∈ L1(0, T ) and

x0 ∈ Lp(0, T ;H) such that ϕ(t, x0) ∈ L1(0, T ) and

ϕ(t, x) ≥ (α0(t), x
)+ β(t), (2.50)

for all x ∈ H and t ∈ [0, T ].
Define the function Iϕ : Lp(0, T ;H) →R

∗
, 1 ≤ p < ∞,

Iϕ(x) =
{∫ T

0 ϕ(t, x)dt, if ϕ(t, x) ∈ L1(0, T ),

+∞, otherwise.
(2.51)

Proposition 2.55 The function Iϕ is convex, lower-semicontinuous and �≡ +∞ on
Lp(0, T ;H). The subdifferential ∂Iϕ is given by

∂Iϕ(x) = {w ∈ Lp′
(0, T ;H); w(t) ∈ ∂ϕ

(
t, x(t)

)
a.e. t ∈ ]0, T [}, (2.52)

where 1
p

+ 1
p′ = 1.

The proof closely parallels the proof of Proposition 2.53, and so, it is left to the
reader.

Example 2.56 Let Ω be a bounded and open domain of Rn with a smooth bound-
ary Γ . Let g : R → R

∗
be a lower-semicontinuous convex function and let β = ∂g

be its subdifferential. Define the function ϕ : L2(Ω) → R
∗ = ]−∞,+∞]

ϕ(y) =
{

1
2

∫
Ω

|grady|2 dx + ∫
Ω

g(y)dx, if y ∈ H 1
0 (Ω) and g(y) ∈ L1(Ω),

+∞, otherwise.

Proposition 2.57 The function ϕ is convex, lower-semicontinuous and

∂ϕ(y) = {w ∈ L2(Ω);w(x) ∈ −Δy(x) + ∂g
(
y(x)

)
a.e. x ∈ Ω

}
,

D(∂ϕ) = {y ∈ H 1
0 (Ω) ∩ H 2(Ω); ∃ w̃ ∈ L2(Ω), w̃(x) ∈ ∂g

(
y(x)

)

a.e. x ∈ Ω
}
.

(2.53)

Proof We have

ϕ(y) = Ig(y) + IΔ(y), ∀y ∈ L2(Ω),

where Ig is defined by (2.48) and IΔ : L2(Ω) → R
∗
,

IΔ(y) = −1

2

∫

Ω

yΔy dξ = 1

2

∫

Ω

|∇y|2 dξ, ∀y ∈ H 1
0 (Ω).
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This implies that ϕ is convex and lower-semicontinuous. If we denote by F :
L2(Ω) → L2(Ω) the map defined by the right-hand side of (2.53), we see that Fy ∈
∂ϕ(y), ∀y ∈ D(F) = {y ∈ H 1

0 (Ω) ∩ H 2(Ω); ∃w̃ ∈ L2(Ω), w̃(x) ∈ ∂g(y(x)) a.e.
x ∈ Ω}.

To show that F = ∂ϕ, it suffices to check that F is maximal monotone, that is,
the range of I + F is all of L2(Ω). In other words, for each f ∈ L2(Ω), the elliptic
equation

y − Δy + ∂g(y) � f in Ω; y ∈ H 1
0 (Ω) ∩ H 2(Ω)

has solution.
One might apply for this the standard existence theory for nonlinear elliptic equa-

tions or Theorem 2.65, because, as easily seen, condition (2.89), that is,

∫

Ω

g
(
(1 + εA)−1y

)
dx ≤

∫

Ω

g(y)dx, ∀y ∈ L2(Ω),

where A = −Δ, D(A) = H 1
0 (Ω) ∩ H 2(Ω), is satisfied. (We assume that g(0) = 0.)

A similar result follows for the function ϕ̃ : L2(Ω) →R, defined by

ϕ̃(y) =
{

1
2

∫
Ω

|grady|2 dx + ∫
Γ

g(y)dx, if y ∈ H 1(Ω), g(y) ∈ L1(Γ ),

+∞, otherwise. �

Arguing as in the preceding example, we see that ϕ is convex and lower-
semicontinuous. As regards its subdifferential ∂ϕ : L2(Ω) → L2(Ω), it is given
by (see Brezis [11, 12])

∂ϕ(y) = −Δy, ∀y ∈ D(∂g), (2.54)

where

D(∂ϕ) =
{

y ∈ H 2(Ω); −∂y

∂ν
∈ β(y) a.e. on Γ

}

.

In particular, if g ≡ 0, the domain of ∂ϕ consists of all y ∈ H 2(Ω) with zero Neu-
mann boundary-value conditions, that is, ∂y

∂ν
= 0 a.e. on Γ .

2.2.3 Regularization of the Convex Functions

Let X and X∗ be reflexive and strictly convex. Let f : X → R
∗

be a lower-
semicontinuous convex function and let A = ∂f . Since A : X → X∗ is maximal
monotone, for every λ > 0 the equation

F(xλ − x) + λAxλ � 0, (2.55)
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where F : X → X∗ is the duality mapping of X, has at least one solution xλ ∈ D(A)

(see Theorem 1.141). The inequality

(
F(x) − F(y), x − y

)≥ (‖x‖ − ‖y‖)2 for all x, y in X

and the strict convexity of X and X∗ then imply that the solution xλ of (2.55) is
unique. We set

xλ = Jλx, (2.56)

Aλx = −λ−1F(xλ − x). (2.57)

(See Sect. 1.4.1.)
For every λ > 0, we define

fλ(x) = inf

{‖x − y‖2

2λ
+ f (y); y ∈ X

}

, x ∈ X. (2.58)

Since, for every x ∈ X, the infimum defining fλ(x) is attained, we may infer that fλ

is convex, lower-semicontinuous and everywhere finite on X. One might reasonably
expect that the function fλ “approximates” f for λ → 0. Theorem 2.58 given below
says that this is indeed the case.

Theorem 2.58 Let f : X → ]−∞,+∞] be a lower-semicontinuous proper and
convex function on X. Let A = ∂f . Then, the function fλ is Gâteaux differentiable
on X and Aλ = ∂fλ for every λ > 0. In addition,

fλ(x) =
(

λ

2

)

‖Aλx‖2 + f (Jλx) for every x ∈ X, (2.59)

lim
λ→0

fλ(x) = f (x) for every x ∈ X, (2.60)

f (Jλx) ≤ fλ(x) ≤ f (x) for every x ∈ X and λ > 0. (2.61)

Proof It is readily seen that the subdifferential of the function y → ‖x−y‖2

2λ
+ f (y)

is just the operator y → λ−1F(y − x) + ∂f (y). This fact shows that the infimum
defining fλ(x) is attained in a point xλ, which satisfies the equation

F(xλ − x) + λ∂f (xλ) � 0.

Thus, xλ = Jλx and equality (2.59) is immediate. Since inequality (2.61) is ob-
vious, we restrict ourselves to verify relation (2.60). There are two cases to be
considered. If x ∈ Dom(f ), then limλ→∞ Jλx = x, by using Corollary 1.70 and
Proposition 1.146. This fact, combined with the lower-semicontinuity of f and in-
equality (2.61), shows that limλ→0 fλ(x) = f (x). Now, assume that f (x) = +∞.
We must show that fλ(x) → +∞ for λ → 0. Suppose that this is not the case, and
that, for example,

fλn(x) ≤ C where λn → 0.
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If equality (2.59) is used again, it would follow that, under the present circum-
stances, Jλnx → x and f (Jλnx) ≤ C. Then the lower-semicontinuity of f would
imply that f (x) ≤ C, which is a contradiction. To conclude the proof, it must be
demonstrated that f is Gâteaux differentiable at every point x ∈ X and ∂fλ(x) =
Aλx. A simple calculation involving relations (2.56), (2.57), and (2.59), and the
definition of ∂f gives

fλ(y) − fλ(x) ≤ λ

2

(‖Aλy‖2 − ‖Aλx‖2)+ (Aλy,Jλy − Jλx),

that is,

fλ(y) − fλ(x) ≤ (Aλy, y − x) + (Aλy,Jλy − y) + (Aλy, x − Jλx)

+ λ

2

(‖Aλy‖2 + ‖Aλx‖2).

Finally,

0 ≤ fλ(y) − fλ(x) − (Aλx, y − x) ≤ (Aλy − Aλx,y − x), (2.62)

for all λ > 0 and x, y in X.
In inequality (2.62), we set y = x + tu, where t > 0 and divide by t . We obtain

lim
t→0

fλ(x + tu) − fλ(x)

t
= (Aλx,u) for every x ∈ X,

because Aλ is demicontinuous by Proposition 1.146. Therefore, fλ is Gâteaux diffe-
rentiable at any x ∈ X and ∂fλ(x) = Aλx. �

Corollary 2.59 In Theorem 2.58, assume that X = H is a real Hilbert space. Then,
the function fλ is Fréchet differentiable of H and its Fréchet differential ∂fλ = Aλ

is Lipschitzian on H .

Proof Denote by I the identity operator in H . Then, F = I and Jλ, respectively,
Aλ, can be expressed as

Jλ = (I + λA)−1

and

Aλ = λ−1(I − Jλ).

Then, Aλ is Lipschitzian on H with the Lipschitz constant 1
λ

(see Proposi-
tion 1.146), so that inequality (2.62) yields

∣
∣fλ(y) − fλ(x) − (Aλx, y − x)

∣
∣≤ ‖y − x‖2

λ
for all λ > 0,

which, obviously, implies that f is Fréchet differentiable on H . �
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Corollary 2.60 Let X be a reflexive Banach space and let f and ϕ be lower-
semicontinuous, convex and proper functions on X. If ∂ϕ(x) = ∂f (x) for every
x ∈ X, then the function x → ϕ(x) − f (x) is constant on X.

Proof Let ϕλ and fλ be defined by formula (2.58). Then, using Theorem 2.58, we
may infer that ∂ϕλ = ∂fλ for every λ > 0, so that

ϕλ(x) − fλ(x) = constant, for every x ∈ X and λ > 0,

because ϕλ and fλ are Gâteaux differentiable. But this clearly implies that

ϕλ(x) − fλ(x) = ϕλ(x0) − fλ(x0) for every x ∈ X and λ > 0,

where x0 is any element in X. Again, using Theorem 2.58, we may pass to the limit,
to obtain

ϕ(x) − f (x) = ϕ(x0) − f (x0) for every x ∈ X,

as claimed. �

Remark 2.61 Let X = H be a Hilbert space and g(x) = 1
2 |x|2. Then the function

fλ can be equivalently written as

fλ = (f ∗ + λg)∗.

2.2.4 Perturbation of Cyclically Monotone Operators
and Subdifferential Calculus

It is apparent that, given two lower-semicontinuous proper convex functions f and
ϕ from X to ]−∞,+∞], then

∂f (x) + ∂ϕ(x) ⊂ ∂(f + ϕ)(x) for every x ∈ D(∂f ) ∩ D(∂ϕ). (2.63)

Thus, it may be ascertained that ∂f + ∂ϕ = ∂(f + ϕ) if and only if the monotone
operator ∂f + ∂ϕ is again maximal. More generally speaking, the following is an
interesting problem: if A and B are maximal monotone operators, is A + B again a
maximal monotone operator? In general, the answer has to be negative since A + B

can even be empty, as happens, for example, if D(A) does not meet D(B). The main
result for the problem in this line is due to Rockafellar [60] and it states that, if at
least one of the maximal monotone operators A or B has a domain with a nonempty
interior and (intD(A)) ∩ D(B) �= ∅ (or (D(A) ∩ intD(B) �= ∅), then A + B is
maximal monotone. Instead of proving this theorem in full, we generally restrict
ourselves to the case when B = ∂f .
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Theorem 2.62 Let X be a reflexive Banach space and let A be a maximal monotone
operator from X to X∗. Let f : X → ]−∞,+∞] be a lower-semicontinuous proper
and convex function on X. Assume that at least one of the following conditions is
satisfied.

D(A) ∩ int Dom(f ) �= ∅, (2.64)

Dom(f ) ∩ intD(A) �= ∅. (2.65)

Then A + ∂f is a maximal monotone operator.

Proof Using the renorming theorem, we can choose in X and X∗ any strictly convex
equivalent norms. Without loss of generality, we may assume that 0 ∈ D(A), 0 ∈ A0
and 0 ∈ ∂f (0). Moreover, according to relations (2.55) and (2.65), we may further
assume that

0 ∈ D(A) ∩ int Dom(f ), (2.66)

or

0 ∈ Dom(f ) ∩ intD(A). (2.67)

This can be achieved by shifting the domains and ranges of A and ∂f . In view of
Theorem 1.141, A + ∂f is maximal monotone if and only if, for every y∗ ∈ Y ∗,
there exists x ∈ D(A) ∩ D(∂f ) such that

F(x) + Ax + ∂f (x) � y∗. (2.68)

To show that equation (2.68) has at least one solution, consider the approximate
equation

Fxλ + Axλ + ∂fλ(x) � y∗, λ > 0, (2.69)

where fλ is the convex function defined by (2.58). According to Theorem 2.58,
the operator ∂fλ = (∂f )λ is monotone and demicontinuous from X to X∗. Corol-
lary 1.140 and Theorem 1.143 are therefore applicable. These ensure us that, for
every λ > 0, equation (2.69) has a solution (clearly, unique) xλ ∈ D(A). Multiply-
ing equation (2.69) by xλ, it yields

‖xλ‖ ≤ ‖y∗‖ for every λ > 0, (2.70)

because Aλ, ∂fλ are monotone and ∂fλ(0) = 0, 0 ∈ A).
First, we assume that condition (2.66) is satisfied. Since f is continuous on the

interior of its effective domain Dom(f ), there is ρ > 0 such that

fλ(ρw) ≤ f (ρw) ≤ C for every w ∈ X, ‖w‖ = 1,

where C is a positive constant independent of λ and w is in X. Then, multiplying
equation (2.69) by xλ − ρw, it yields

(Fxλ, xλ − ρw) + (Axλ, xλ − ρw) + fλ(xλ) ≤ (y∗, xλ − ρw) + C. (2.71)
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Let y∗
λ = y∗ − Fxλ − ∂fλ(xλ) ∈ Axλ. In relation (2.71), we choose

w = −F−1
(

y∗
λ

‖y∗
λ‖
)

to obtain

ρ‖y∗
λ‖ ≤ C for all λ > 0. (2.72)

(We shall denote by C several positive constants independent of λ.) Thus, with the
aid of equations (2.69) and (2.70), this yields

∥
∥∂fλ(xλ)

∥
∥≤ C for all λ > 0. (2.73)

Next, we assume that condition (2.67) is satisfied. Then, according to Theo-
rem 1.144, the operator A is locally bounded at x = 0, so that there is ρ > 0, such
that

sup
{‖z∗‖; z∗ ∈ Ax; ‖x‖ ≤ ρ

}≤ C. (2.74)

Let w be any element in X such that ‖w‖ = 1.
Again, multiplying equation (2.69) by xλ − ρw, we obtain

(Fxλ, xλ − ρw) + (∂fλ(xλ), xλ − ρw
)+ (Axλ, xλ − ρw) = (y∗

λ, xλ − ρw).

Then, we put

w = −F−1
(

∂fλ(xλ)

‖∂fλ(xλ)‖
)

and use the monotonicity of A and estimate (2.74) to get

∥
∥∂fλ(xλ)

∥
∥≤ C for every λ > 0.

So far, we have shown that y∗
λ,Fxλ and ∂fλ(xλ) remain in a bounded subset of X∗.

Since the space X is reflexive, we may assume that

xλ → x weakly in X,

Fxλ + y∗
λ → z∗ weakly in X∗.

(2.75)

To conclude the proof, it remains to be seen that [x, z∗] ∈ A + F and y∗ − z∗ ∈
∂f (x). Let λ,μ > 0. Subtracting the corresponding equations yields

(Fxλ + Fxμ,xλ − xμ) + (y∗
λ − y∗

μ,xλ − xμ) + (∂fλ(xλ) − ∂fμ(xμ), xλ − xμ

)= 0

and therefore

lim
λ,μ→0

(Fxλ + y∗
λ − Fxμ − y∗

μ,xλ − xμ) = 0 (2.76)
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because
(
∂fλ(xλ) − ∂fμ(xμ), xλ − xμ

)

≥ (∂fλ(xλ) − ∂fμ(xμ), xλ − Jλxλ − xμ + Jμxmu
)

≥ −(∥∥∂fλ(xλ)
∥
∥+ ∥∥∂fμ(xμ)

∥
∥
)(

λ
∥
∥∂fλ(xλ)

∥
∥+ μ

∥
∥∂fμ(xμ)

∥
∥
)
.

Here, we have used relations (2.56), (2.57) and the monotonicity of ∂f . Extracting
further subsequences, if necessary, we may assume that

lim
λ→0

(
F(xλ) + y∗

λ, xλ

)= �.

Then, relation (2.75) shows that (z∗, x) = �. Now, let [u,v] be any element in the
graph of A + F . We have

(Fxλ + y∗
λ − v, xλ − u) ≥ 0, ∀λ > 0.

Hence,

(z∗ − v, x − u) ≥ 0, (2.77)

because (z∗, x) = �. Since F is monotone and demicontinuous from X to X∗, it
follows from Corollary 1.140 quoted above that A + F is maximal monotone in
X × X∗. Inasmuch as [u,v] was arbitrary in A + F , then inequality (2.77) implies
that [x, z∗] ∈ A + F . In other words, z∗ ∈ Ax + Fx.

Now, we fix any u in X and multiply equation (2.69) by xλ − u. It follows from
the definition of the subgradient that

fλ(xλ) ≤ fλ(u) + (y∗, xλ − u) − (xλ + y∗
λ, xλ − u) (2.78)

and therefore

lim sup
λ→0

fλ(xλ) ≤ f (u) + (y∗, x − u) − (z∗, x − u). (2.79)

Here, we have used in particular Theorem 2.58 and relation (2.77).
Since {∂fλ(xλ); λ > 0} is bounded in X∗, we have

lim
λ→0

(
xλ − Jλ(xλ)

)= 0 strongly in X.

Hence,

Jλ(xλ) → x weakly in X as λ → 0.

We recall that a convex function f on a topological vector space X, which is
lower-semicontinuous with respect to the given topology on X, is necessarily lower-
semicontinuous also with respect to the corresponding weak topology on X. Thus,
the combination of relations (2.59) and (2.79) yields

f (x) ≤ f (u) + (y∗, x − u) − (z∗, x − u)
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and therefore

y∗ − z∗ ∈ ∂f (x),

because u was arbitrary in X. Hence, x satisfies equation (2.68). The proof of The-
orem 2.62 is complete. �

Corollary 2.63 Let f and ϕ be two lower-semicontinuous, proper and convex func-
tions defined on a reflexive Banach space X. Suppose that the following condition is
satisfied.

Dom(f ) ∩ int Dom(ϕ) �= ∅. (2.80)

Then

∂(f + ϕ) = ∂f + ∂ϕ. (2.81)

Proof Since D(∂ϕ) is a dense subset of Dom(ϕ) (see Corollary 2.44), condi-
tion (2.80) implies that Dom(f ) ∩ intD(∂ϕ) �= ∅. Theorem 2.62 can therefore be
applied to the present situation. Thus, the operator ∂ϕ + ∂f is maximal monotone
in X × X∗. Since ∂ϕ + ∂f ⊂ ∂(ϕ + f ), relation (2.81) follows. �

Remark 2.64 It results that Corollary 2.63 remains valid if X is a general Banach
space. An alternative proof of Corollary 2.63 in this general setting will be given in
the next chapter.

We conclude this section with a maximality criterion for the case in which neither
D(A) nor Dom(f ) has a nonvalid interior.

Theorem 2.65 Let f : H → ]−∞,+∞] be a lower-semicontinuous, proper convex
function on a real Hilbert space H . Let A be a maximal monotone operator from H

into itself. Suppose that, for some h ∈ H and C ∈ R,

f
(
(I + λA)−1(x + λh)

)≤ f (x) + Cλ for all x ∈ H and λ > 0. (2.82)

Then the operator A + ∂f is maximal monotone and

D(A + ∂f ) = D(A) ∩ D(∂f ) = D(A) ∩ Dom(f ). (2.83)

Proof To prove that A + ∂f is maximal monotone, it suffices to show that for every
y ∈ H there exists x ∈ D(A) ∩ D(∂f ) such that

x + Ax + ∂f (x) � y. (2.84)

To show that this is indeed the case, consider the equation

xλ + Aλxλ + ∂f (xλ) � y, (2.85)
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where Aλ = λ−1(I − (I − λA)−1). Since Aλ is monotone and continuous on H ,
equation (2.85) has, for every λ > 0, a unique sol xλ ∈ D(∂f ). Let x0 be any ele-
ment in D(A) ∩ D(∂f ). Since ‖Aλx0‖ ≤ ‖A0x0‖ and the operators A and ∂f are
monotone, we see by multiplying equation (2.85) by xλ −x0 that {‖xλ‖} is bounded.
Next, we observe that condition (2.82) implies that

(
∂f (x),Aλ(x + λh)

)= λ−1(∂f (x), x + λh − (I + λA)−1(x + λh)
)

≥ (∂f (x),h
)+ (f (x) − f (I + λA)−1(x + λh)

)
λ−1

≥ −C − ‖h‖‖∂f (x)‖. (2.82′)

Now, we write equation (2.82′) as

xλ + Aλ(xλ + λh) + ∂f (xλ) = y + Aλ(xλ + λh) − Aλxλ

and multiply it (scalarly in H ) by Aλ(xλ + λh). Recalling that Aλ is Lipschitzian
with Lipschitz constant λ−1, it follows by (2.82) that {‖Aλxλ‖} is bounded for
λ → 0. We subtract the defining equations for xλ and xμ and then multiply by
xλ − xμ; we obtain

‖xλ − xμ‖2 + (Aλxλ − Aμxμ,xλ − xμ) ≤ 0.

Since Aλxλ ∈ AJλxλ and A is monotone, we see that

‖xλ − xμ‖2 → 0 as λ,μ → 0.

Hence, limλ→0 xλ = 0 exists in the strong topology of H . It remains to be shown
that x satisfies equation (2.84). The techniques is similar to the one previously used,
but with some simplifications. Indeed, we can extract from {xλ} a subsequence {xλn}
such that

Aλn
xλn

→ y0 in the weak topology of H.

Since A is maximal monotone, it is also demiclosed (that is, its graph is strongly–
weakly closed in H × H ) (see Proposition 1.146). Therefore, x ∈ D(A) and y0 ∈
Ax. The same argument applied to ∂f shows that y − Aλxλ − xλ converges weakly
to y1 ∈ ∂f (x). Hence, x satisfies equation (2.84). To prove (2.83), we fix any x in
D(A)∩ Dom(f ). Then, there exist xε ∈ Dom(f ) such that xε → x strongly in H as
ε → 0. We set uε = (I + εA)−1(xε + εh) and observe that

‖uε − x‖ ≤ ∥∥uε − (I + εA)−1x
∥
∥+ ∥∥(I + εA)−1x − x

∥
∥

≤ ‖xε − x‖ + ∥∥(I + εA)−1x − x
∥
∥+ ε‖h‖.

Hence, uε → x as ε → 0. Moreover, by condition (2.82), uε ∈ D(A) ∩ Dom(f ).
Briefly, we have shown that D(A) ∩ Dom(f ) ⊂ D(A) ∩ Dom(f ). Now, we prove
that D(A) ∩ Dom(f ) ⊂ D(A) ∩ D(∂f ). Let u be any element in D(A) ∩ Dom(f )

and let uε ∈ D(A) ∩ D(∂f ) be the unique solution to the equation

uε + εAuε + ε∂f (uε) � u.
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We have

f (uε) − f (u) ≤
(

u − uε

ε
− Auε,uε − u

)

≤ −1

ε
‖uε − u‖2 − (Au,uε − u),

which implies that limε→0 uε = 0. Since u is arbitrary in D(A) ∩ Dom(f ), we may
infer that D(A)∩ Dom(f ) ⊂ D(A) ∩ D(∂f ), as claimed. Since D(A)∩ Dom(f ) ⊂
D(A) ∩ Dom(f ), Relation (2.83) follows, and this completes the proof. �

We have shown, incidentally, in the proof of Theorems 2.62 and 2.65 that, under
appropriate assumptions on A and f , the solution x of the equation

Ax + ∂f (x) � 0

can be obtained as a limit, as λ tends to 0 of the solutions xλ to the approximating
equations

Axλ + ∂fλ(λ) � 0.

This approach to construct the solution x closely resembles the penalty method in
constrained optimization. To be more specific, let us assume that f = IK , where K

is a closed convex subset of a Hilbert space H and A = ∂ϕ.
Thus, equation Ax + ∂f (x) � 0 assumes the form

min
{
ϕ(x); x ∈ K

}
,

while the corresponding approximate equation can be equivalently expressed as the
following unconstrained optimization problem:

min

{

ϕ(x) + 1

2λ
‖x − PKx‖2; x ∈ H

}

,

because fλ(x) = 1
2λ

‖∂fλ(x)‖2 + f ((I + λ∂f )−1x) and (I + λ∂IK)−1x = PKx

(PKx is the projection of x on K).
The family of continuous functions x → 1

2λ
‖x − PKx‖2, x ∈ H , for a fixed

λ > 0, is a family of exterior penalty functions for the closed convex set K .
Now, we prove a mean property for convex functions.

Proposition 2.66 Let X be a real Banach space and f : X → R be a continuous
convex function. If x and y are distinct points of X, then there is a point z on the
open segment between x and y and w ∈ ∂f (z) such that

f (x) − f (y) = (w,x − y). (2.86)

Proof Without loss of generality, we may assume that y = 0. Define the function
ϕ : R →R

ϕ(μ) = f (μx), μ ∈ R.
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Since ∂ϕ(μ) = (∂f (μx), x) for all μ ∈ R, it suffices to show that there exist
θ ∈ ]0,1[ and ζ ∈ ∂ϕ(θ) such that ϕ(1)−ϕ(0) = ζθ . To this end, consider the regu-
larization ϕλ of ϕ defined by formula (2.58). Since ϕλ is continuously differentiable,
for every λ > 0, there exists θλ ∈ ]0,1[, such that ϕλ(1) − ϕ1(0) = ∂ϕλ(θλ). On a
sequence λn → 0 we have θλn → θ and ∂ϕλn(θλn) → η ∈ ∂ϕ(θ). Since ϕλ → ϕ for
λ → 0, we infer that ϕ(1)−ϕ(0) = η ∈ ∂ϕ(θ), as claimed (obviously, θ ∈ ]0,1[). �

2.2.5 Variational Inequalities

Let X be a reflexive real Banach space and X∗ its dual space. Let A be a linear or
nonlinear monotone operator form X to X∗ and let K be a closed convex set of X.
We say that x satisfies a variational inequality if

x ∈ K, (Ax − f,u − x) ≥ 0 for all u ∈ K, (2.87)

where f is given in X∗. In terms of subdifferentials, inequality (2.87) can be writ-
ten as

Ax + ∂IK(x) � f, (2.88)

where IK : X → [0,+∞] is the indicator function of K (defined by relation (2.3)).
Note that, when K = X or x is an interior point of K , inequality (2.87) actually

reduces to the equality

(Ax − f,w) = 0 for all w in X,

that is, Ax − f = 0.
It should be said that many problems in the calculus of variations naturally arise

in the general form of a variational inequality such as (2.87). For instance, when A is
the subdifferential of a lower-semicontinuous convex function ϕ on X, then any so-
lution x of the variational inequality (2.87) is actually a solution of the optimization
problem

Minimize ϕ(x) − (f, x) over all x ∈ K.

Theorem 2.67 Let A : X → X∗ be a monotone, demicontinuous operator and let
K be a closed convex subset of X. In addition, assume that either K is bounded or
A is coercive on K , that is, for some x0 ∈ K ,

lim{‖x‖→+∞, x∈K}(Ax,x − x0)‖x‖−1 = +∞. (2.89)

Then, the variational inequality (2.87) has at least one solution. Moreover, the set
of solutions is bounded, closed and convex. If A is strictly monotone, the solution
to (2.87) is unique.
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Proof By Corollary 1.142, the operator A is maximal monotone and by Theo-
rem 2.62, A + ∂IK is a maximal monotone subset of X × X∗. Since, by assump-
tion, A + ∂IK is coercive, it follows by Theorem 1.143 that the range R(A + ∂IK)

of A + ∂IK is all of X∗. Hence, the set C of solutions to the variational inequal-
ity (2.87) is nonempty. Since C = (A + ∂IK)−1(0) and (A + ∂IK)−1 is maximal
monotone (because so is A + ∂IK ), we may conclude that C is convex and closed.
Using the coercivity of A+∂IK , we see that C is bounded. If A is strictly monotone,
that is,

(Ax − Ay,x − y) = 0 if and only if x = y,

then obviously C consists of a single point. Thus, the proof is complete. �

We pause, briefly, to point out an important generalization of Theorem 2.67
(see Brezis [10]).

The operator A : K → X∗ is said to be pseudo-monotone if the following condi-
tions are satisfied:

(i) If {un} ⊂ K is weakly convergent to u in X and lim supn→∞(Aun,un −u) ≤ 0,
then lim infn→∞(Aun,un − v) ≥ (Au,u − v) for all v ∈ K .

(ii) For every v ∈ K , the mapping u → (Au,u−v) is bounded from below on every
bounded subset of K .

It is easy to show that every monotone demicontinuous operator from K to X∗ is
pseudo-monotone.

The result is that Theorem 2.67 remains valid if one merely assumes that A is
pseudo-monotone and coercive from K to X∗. Other existence results for the above
variational inequality could be obtained by applying the general perturbations the-
orems given in Sect. 2.2.4. We confine ourselves to mention the following simple
consequence of Theorem 2.65.

Corollary 2.68 Let X = H be a real Hilbert space and K be a closed convex subset
of H . Let A be a maximal monotone (possible) multivalued operator from H into
itself such that

(I + λA)−1(x + λh) ∈ K for all x ∈ K and λ > 0, (2.90)

where h is some fixed element of H .
If, in addition, either K is bounded, or A is coercive on K , then the variational

inequality (2.87) has at least one solution.

Proof Applying Theorem 2.65, where f = IK , we infer that the operator A + ∂IK

is maximal monotone in H × H . Since A + ∂IK is coercive, this implies that its
range is all of H (see Corollary 1.140).

To be more specific, let us suppose in Theorem 2.67 that X = V and X∗ = V ′
are Hilbert spaces which satisfy

V ⊂ H ⊂ V ′
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where H is a real Hilbert space identified with its own dual and the inclusion map-
ping of V into H is continuous and densely defined. We further assume that the
operator A : V → V ′ is defined by

(Au,v) = a(u, v) for all u,v in V,

where a(u, v) is a bilinear continuous form on V ×V , which satisfies the coercivity
condition

a(u,u) ≥ ω‖u‖2 for all u in V, (2.91)

where ω > 0. (As usual, ‖ · ‖ denotes the norm in V , and (·, ·) the pairing between
V and V ′.) Clearly, A is linear, continuous and positive from V to V ′. Let K be a
closed convex subset of V . Observe that in this case the variational inequality (2.87)
becomes

a(u, v − u) ≥ (f, v − u) for all v ∈ K. (2.92)

In particular, if the bilinear form a is symmetric, problem (2.92) can be equivalently
expressed as

min

{
1

2
a(v, v) − (f, v); v ∈ K

}

. (2.93)

�

We deduce from Theorem 2.67 the following corollary.

Corollary 2.69 For every f ∈ V ′, the variational inequality (2.92) has a unique
solution u ∈ K .

It should be observed that relation (2.92) implies that the mapping f → u is
Lipschitzian from V ′ into V with Lipschitz constant 1

ω
.

The variational inequality (2.92) includes several partial differential equations
with unilateral boundary conditions and free boundary-value problems of elliptic
type. In applications, usually A is an elliptic differential operator on a subset of Rn,
and K incorporates various unilateral conditions on the boundary Γ or on Ω . We
illustrate this by a few typical examples.

Example 2.70 (The obstacle problem) Consider in a bounded open subset Ω of Rn,
the second-order differential operator

Av = −(aij (x)vxi

)
xj

, (2.94)

where the coefficients aij are in L∞(Ω) and satisfy the condition (ω > 0)

aij (x)ξiξj ≥ ω|ξ |2, ∀ξ ∈ R
n, ξ = (ξ1, . . . , ξn).
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In equation (2.94), the derivatives are taken in the sense of distributions in Ω . More
precisely, the operator A is defined from H 1(Ω) to (H 1(Ω))′ by

(Au,v) = a(u, v) =
∫

Ω

aij (x)uxi
vxj

dx for all u,v ∈ H 1(Ω). (2.94′)

Let V be a linear space such that H 1
0 (Ω) ⊂ V ⊂ H 1(Ω) and let f ∈ (H 1(Ω))′. An

element u ∈ V , which satisfies the equation

a(u, v) = (f, v) for all v in V,

is a solution to a certain boundary-value problem. For instance, the Dirichlet prob-
lem

−(aijuxi
)xj

= f in Ω, u = 0 in Γ

arises for V = H 1
0 (Ω).

Let V = H 1
0 (Ω), f ∈ L1(Ω), and K = {v ∈ V ;v ≥ ψ a.e. in Ω}, where ψ ∈

H 2(Ω) is a given function such that ψ(x) ≤ 0 a.e. x ∈ Γ . Then, the variational
inequality (2.92) becomes

∫

Ω

aij (x)uxi
(v − u)xj

dx ≥
∫

Ω

f (v − u)dx for all v ∈ K. (2.95)

According to Corollary 2.69, the latter has a unique solution u ∈ K . We shall see
that u can be viewed as a solution to the following boundary-value problem (the
obstacle problem):

−(aij (x)uxi

)
xj

= f in E = {x ∈ Ω; u(x) > ψ(x)
}
, (2.96)

−(aij (x)uxi

)
xj

≥ f in Ω, (2.97)

u ≥ ψ on Ω, u = ψ in Ω \ E, u = 0 in Γ. (2.98)

To this end, we assume that E is an open subset. Let α ∈ C∞
0 (E) and ρ > 0 be such

that u ± ρα ≥ ψ on Ω . Then, in (2.95), we take v = u ± ρα to get
∫

Ω

aijuxi
αxj

dx =
∫

E

f α dx for all α ∈ C∞
0 (E).

The latter shows that u satisfies equation (2.96) (in the sense of distributions). Next,
we take in (2.95) v = α+ψ , where α ∈ C∞

0 (Ω) is such that α ≥ 0 on Ω , to conclude
that u satisfies inequality (2.97) (again in the sense of distributions). As regards
relations (2.98), they are simple consequences of the fact that u ∈ K .

Problem (2.96)–(2.98) is an elliptic boundary-value problem with the free boun-
dary ∂I , where I is the incidence set {x ∈ Ω;u(x) = ψ(x)}. For a detailed study
of this problem, we refer the reader to the recent book [37] by Kinderlehrer and
Stampacchia.
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As seen earlier, in the special case aij = aji , the variational inequality (2.95)
reduces to the minimization problem

min

{∫

Ω

aij (x)vxi
vxj

dx −
∫

Ω

f dx; v ∈ K

}

.

The variational inequality (2.95) models the equilibrium configuration of an elas-
tic membrane Ω fixed at Γ , limited from below by a rigid obstacle ψ and subject to
a vertical field of forces with density f (y is the deflection of the membrane). Simi-
lar free boundary-value problems occur in hydrodynamic and plasma physics. For
instance, such a free boundary problem models the water flow through an isotropic
homogeneous rectangular dam (see Baiocchi [3]).

Example 2.71 Suppose now that the energy integral

1

2

∫

Ω

|gradv|2 dx −
∫

Ω

f v dx

has to be minimized on K = {v ∈ H 1
0 (Ω); |gradv| ≤ 1, a.e. on Ω}. As seen earlier,

this problem can be equivalently expressed as
∫

Ω

gradugrad(u − v)dx ≤
∫

Ω

f (u − v)dx for all v ∈ K.

This is a variational inequality of the form (2.92) and it arises in the elasto-plastic
torsion of beams of section Ω under a torque field f (see Duvaut and Lions [19]).
Arguing as in Example 2.56, it follows that formally the solution u satisfies the free
boundary-value problem

−Δu = f on Ω1, u = 0 on Γ,

|gradu| = 1 on Ω2,

where Ω1 ∩ Ω2 = ∅ and Ω1 ∪ Ω2 = Ω .

Example 2.72 Let a : H 1(Ω) × H 1(Ω) →R be the bilinear form

a(u, v) =
∫

Ω

gradugradv dx +
∫

Ω

uv dx

and

K = {u ∈ H 1(Ω); u ≥ 0 a.e on Γ
}
.

We recall that, by Theorem 1.133, the “trace” of u ∈ H 1(Ω) belongs to H
1
2 (Γ ) ⊂

L2(Γ ), so that K is well defined. Invoking once again Corollary 2.69, we deduce
that, for every f ∈ L2(Ω), the variational inequality

a(u, v − u) ≥
∫

Ω

f (v − u)dx, for all v ∈ K, (2.99)
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has a unique solution u ∈ K . Let v = u ± ϕ, where ϕ ∈ C∞
0 (Ω). Then, inequal-

ity (2.99) yields

a(u,ϕ) −
∫

Ω

f ϕ dx = 0, for all ϕ ∈ C∞
0 (Ω).

Hence,

−Δu + u = f on Ω (2.100)

in the sense of distributions. In particular, it follows from equation (2.100) that the

outward normal derivative ∂u
∂ν

belongs to H− 1
2 (Γ ) (see Lions and Magenes [42]).

We may apply Green’s formula
∫

Ω

(Δu − u)v dx =
∫

Γ

v
∂u

∂ν
dσ − a(u, v) or all v ∈ H 1(Ω). (2.101)

In formula (2.101), we have denoted by
∫
Γ

v ∂u
∂ν

dσ the value of ∂u
∂ν

∈ H− 1
2 (Γ ) at

v ∈ H
1
2 (Γ ). Thus, comparing equation (2.101) with (2.99) and (2.100), it yields

∫

Γ

(v − u)
∂u

∂ν
dσ ≥ 0 for all v ∈ K.

To sum up, we have shown that the solution u of the variational problem (2.99)
satisfies (in the sense of distribution) the following unilateral problem:

− Δu + u = f on Ω,

u ≥ 0,
∂u

∂ν
≥ 0, u

∂u

∂ν
= 0 on Γ.

(2.102)

Remark 2.73 The unilateral problem (2.102) is the celebrated Signorini’s problem
from linear elasticity (see Duvaut and Lions [19]) and under our assumptions on
f it follows that u ∈ H 2(Ω) (see Brezis [12]) and equations (2.102) hold a.e. on
Ω and Γ , respectively. As a matter of fact, the variational inequality (2.99) can be
equivalently written as ∂ϕ(u) � f , where ϕ : L2(Ω) → ]−∞,+∞] is given by (see
Example 2.56)

ϕ(y) = 1

2

∫

Ω

|grady|2 dx +
∫

Γ

g(y)dσ

and g(r) = 0 for r ≥ 0, g(r) = +∞ for r < 0.
Similarly, if aij ∈ C1(Ω) and f ∈ L2(Ω), then the solution u to the variational

inequality (2.95) belongs to H 1
0 (Ω) ∩ H 2(Ω) and satisfies the complementarity

system

−(aij (x)uxi

)
xj

− f (x)
(
u(x) − ψ(x)

)= 0 a.e. x ∈ Ω,

u(x) ≥ ψ(x); −(aij (x)uxi
(x)
)
xj

≥ f (x) a.e. x ∈ Ω.
(2.96′)
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Indeed, by Corollary 2.68, the equation

AH u + ∂IK(u) � f, (2.103)

where

AH u = Au ∩ H for u ∈ D(AH) = H 1
0 (Ω) ∩ H 2(Ω) and

K = {u ∈ L2(Ω); u(x) ≥ ψ(x) a.e. x ∈ Ω
} (2.104)

has a unique solution u ∈ K ∩ D(AH ). (It must be noticed that condition (2.90)
holds for h(x) = (aij (x)ψxi

)xj
by the maximum principle for linear elliptic equa-

tions.) Since, by Proposition 2.53,

∂IK(u) = {w ∈ L2(Ω); w(x)
(
u(x) − ψ(x)

)= 0, w(x) ≥ 0 a.e. x ∈ Ω
}
, (2.105)

we see that u satisfies equation (2.96′), as claimed.

Example 2.74 (Generalized complementarity problem) Several problems arising in
different fields such as mathematical programming, game theory, mechanics, theory
of economic equilibrium, have the same mathematical form, which may be stated
as follows:

For a given map A from the Banach space X into its dual space X∗, find x0 ∈ X

satisfying

x0 ∈ C, −Ax0 ∈ C◦, (x0,Ax0) = 0, (2.106)

where C is a given closed, convex cone with the vertex at 0 in X and C◦ is its
polar, that is, C◦ = {x∗ ∈ X∗; (x, x∗) ≤ 0 for all x ∈ C}.

This problem is referred to as the generalized complementarity problem. In the spe-
cial case, when X = X∗ = R

n, C = R
n+ (where R

n is the n-dimensional Euclidean
space and R

m+ the set of nonnegative n-vectors), the above problem takes the familiar
form

x0 ≥ 0, Ax0 ≥ 0, (x0,Ax0) = 0. (2.107)

The following simple lemma indicates the equivalence between problem (2.106)
and a variational inequality.

Lemma 2.75 The element x0 ∈ C is a solution of problem (2.106) if and only if

(Ax0, x − x0) ≥ 0 for all x ∈ C. (2.108)

Proof It is obvious that every solution x0 of the complementarity problem (2.106)
satisfies the above variational inequality. Let x0 ∈ C be any solution of inequal-
ity (2.108). Taking x = x0 + y in (2.108), where y ∈ C, it follows that (Ax0, y) ≥ 0.
Hence, −Ax0 ∈ C◦. Also, taking x = 2x0, we see that (x0,Ax0) ≥ 0, while, for
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x = 0, (2.108) implies that (x0,Ax0) ≤ 0. Therefore (x0,Ax0) = 0. This completes
the proof. �

Now, we are ready to prove the main existence result for the complementarity
problem.

Theorem 2.76 Let X be a real reflexive Banach space, C a closed convex cone in
X, and let A be a monotone, demicontinuous operator from X to X∗. If, in addition,
A is coercive on C, then the generalized complementarity problem (2.106) has at
least one solution. Moreover, the set of all solutions of this problem is bounded
closed convex subset of C, which consists of a single vector if A is strictly monotone.

Proof There is nothing left to do, except to combine Theorem 2.67 with Lem-
ma 2.75. �

As mentioned earlier, Theorem 2.67 remains valid if the operator A is pseudo-
monotone and coercive from K to X∗. In particular, this happens when the space X

is finite-dimensional and A is continuous and coercive on K .

Corollary 2.77 Let X be finite-dimensional and let A be continuous on C. If, in
addition, there exists a vector x0 ∈ C such that

lim
‖x‖→+∞
x∈C

(Ax,x − x0)

‖x‖ = +∞, (2.109)

then the generalized complementarity problem (2.106) has at least one solution.

Before leaving the subject of complementarity problems, we should point out
another existence result which can be derived on the basis of Corollary 2.68.

Corollary 2.78 Let X = H be a real Hilbert space and let A be a maximal mono-
tone (possible) multivalued operator from H into itself, which is coercive on C.
Assume further that there is h ∈ H such that

(I + λA)−1(x + λh) ⊂ C for all x ∈ C and λ > 0.

Then, problem (2.106) has at least one solution.

2.2.6 ε-Subdifferentials of Convex Functions

In the following we present a generalization of subdifferential taking into ac-
count its characterization with the aid of support hyperplanes to the epigraph
(see Remark 2.37). It is clear that, if x ∈ D(∂f ), then x ∈ Dom(f ) and f is
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lower-semicontinuous at x. Conversely, for a given proper convex lower-semi-
continuous function f , the existence of support nonvertical hyperplanes passing
through (x, f (x)) is not ensured for every x ∈ Dom(f ), that is, it is possible that
x∈D(∂f ).

But for any x ∈ Dom(f ) there exists at least one closed hyperplane passing
through (x, f (x) − ε), ε > 0, such that epif is contained in one of the two closed
half-spaces determined by that hyperplane. These hyperplanes can be considered as
the approximants of support hyperplanes passing through (x, f (x)). Consequently,
we get a notion of approximate subdifferential.

Definition 2.79 The mapping ∂εf : X → X∗ defined by

∂εf (x) = {x∗ ∈ X∗; f (x) − f (u) ≤ (x − u,x∗) + ε, ∀u ∈ X∗}, (2.110)

where f is an extended real-valued function on X, is called the ε-subdifferential
of f at x.

It is clear that this mapping is generally multivalued and D(∂εf ) = ∅ if f is not
proper. If f is a proper function, then we must have ε ≥ 0 and D(∂εf ) ⊂ Dom(f ).
For ε = 0 we obtain the subdifferential defined by Definition 2.30. Also, we
have

∂f (x) =
⋂

ε>0

∂εf (x), x ∈ Dom(f ). (2.111)

Some properties of ε-subdifferential generalize properties of subdifferential but
most of their properties are different because ∂f is a local notion while ∂εf is a
global one.

Proposition 2.80 If f is a proper convex lower-semicontinuous function, then
∂εf (x) is a nonvoid closed convex set for any ε > 0 and x ∈ Dom(f ).

Proof We have (x, f (x) − ε)∈ epif for any fixed ε > 0, x ∈ Dom(f ). By hypoth-
esis, epif is a nonvoid closed convex set (see Propositions 2.36 and 2.39). Using
Corollary 1.45, we get a closed hyperplane passing through (x, f (x) − ε) at epif .
This hyperplane is necessarily nonvertical, that is, it can be considered of the form
(x∗,1). Thus, we obtain x∗ ∈ ∂εf (x). �

Corollary 2.81 For any proper convex lower-semicontinuous function f we have
D(∂εf ) = Dom(f ), where ε > 0.

It should be observed that the reverse of Proposition 2.80 is also true. Conse-
quently, it can be given a characterization of proper convex lower-semicontinuous
functions in terms of ε-subdifferentials.
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Theorem 2.82 An extended valued function f on X is convex and lower-semi-
continuous if and only if ∂εf (x) �= ∅ for all x ∈ Dom(f ).

Proof According to Proposition 2.80, we must prove only the sufficiency part. First,
we remark that, if there exists ū ∈ X such that f (ū) = −∞, then ū ∈ Dom(f ),
while ∂εf (ū) = ∅. Hence, f must be a proper function. Now, if x ∈ Dom(f ) and
(x,α)∈ epif , then there exists ε > 0 such that (x, f (x) − ε)∈ epif . But since
∂εf (x) �= ∅, we have a closed nonvertical hyperplane passing through (x, f (x)− ε)

such that epif is contained in one of the two closed half-spaces determined by
that hyperplane. Consequently, epif is an intersection of closed half-spaces. Hence,
epif is a closed set. Therefore, f is convex and lower-semicontinuous (see Propo-
sitions 2.3, 2.5). �

Proposition 2.33, concerning the relationship between the subdifferential and the
conjugate, becomes the following proposition.

Proposition 2.83 Let f : X →] − ∞,+∞] be a proper convex function. Then the
following three properties are equivalent:

(i) x∗ ∈ ∂εf (x).
(ii) f (x) + f ∗(x) ≤ (x, x∗) + ε.

If, in addition, f is lower-semicontinuous, then all these properties are equivalent
to the following one.

(iii) x ∈ ∂εf
∗(x∗).

Remark 2.84 If X is reflexive, then ∂εf
∗ : X → X is just the inverse of ∂εf , that is,

(i) and (iii) are equivalent for each proper convex function f .

Remark 2.85 As follows from Definition 2.79, if x ∈ Dom(f ), then f (u) ≥
f (x) − ε for all u ∈ Dom(f ) if and only if 0 ∈ ∂εf (x). Therefore, for a lower-
semicontinuous function f , ∂εf

∗(0) is just the set of all ε-minimum elements
of f .

Now, to describe some properties of monotonicity of ε-subdifferential we give a
weaker type of monotonicity for a multivalued mapping.

Definition 2.86 A mapping A : X → X∗ is called ε-monotone if

(x − y, x∗ − y∗) ≥ −2ε, for all x∗ ∈ Ax, y∗ ∈ Ay. (2.112)

It is obvious that ∂εf is ε-monotone for each ε > 0. But while ∂f is a maximal
monotone operator, ∂εf may be not maximal ε-monotone. In this line, we shall give
the following two examples.
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Example 2.87 Let f be the indicator function of the closed interval (−∞,0]. By
an elementary computation for a given ε > 0, we find ∂εf (0) = [0,∞], ∂εf (x) =
[0,− ε

x
] if x < 0, and ∂εf (x) = ∅ if x > 0. Thus, −2ε∈ ∂εf (1), but for any x ∈

∂εf (a), a ≤ 0, we obtain (x + 2ε)(a − 1) = ax −x + 2εa − 2ε ≥ −2ε for all x ≤ 0.
Hence, ∂εf ∪ {(−2ε,1)}, ε > 0, is also the graph of an ε-monotone operator, that
is, ∂εf is not maximal ε-monotone.

Example 2.88 Let X be a real Hilbert space and f : X → R the quadratic form
defined by

f (x) = 1

2
〈Ax,x〉 + 〈b, x〉 + c, for all x ∈ X,

where A is one-to-one linear continuous self-adjoint operator, b ∈ X and c ∈R. For
any ε ≥ 0, we get

∂εf (x) = Ax + b + {y ∈ A; 〈A−1y, y
〉≤ 2ε

}
, ε ≥ 0, x ∈ X. (2.113)

Indeed, if z ∈ ∂εf (x), then we must have

1

2
〈Ax,x〉 + 〈b, x〉 − 1

2
〈Au,u〉 − 〈b,u〉 ≤ 〈x − u, z〉 + ε,

for all u ∈ X. But, for fixed x ∈ X and z ∈ ∂εf (x), this quadratic form of u takes a
maximum value on X in an element u0 where its derivative is null, that is, Au0 +
b − z = 0. Thus, we have

1

2
〈Ax,x〉 + 〈v, x〉 − 1

2

〈
z − b,A−1(z − b)

〉+ 〈z − b,A−1(z − b)
〉≤ 〈x, z〉 + ε,

from which we obtain

〈Ax,x〉 + 2〈x, b − z〉 + 〈A−1(z − b), z − b
〉≤ 2ε,

and so,
〈
x − A−1(z − b), b − z

〉+ 〈x, b − z + Ax〉 ≤ 2ε.

Therefore, if we denote y = z − Ax − b, then

〈
A−1y, y

〉≤ 2ε,

that is, equality (2.113) is completely proved.
Now, let us consider (u, v) ∈ X × X such that 〈x − u, z − v〉 ≥ −2ε, for all

z ∈ ∂εf (x).
According to equality (2.113), it follows that

〈x − u,Ax + b + y − v〉 ≥ −2ε, for all x ∈ X, (2.114)
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and every y ∈ X fulfilling the inequality 〈A−1y, y〉 ≤ 2ε. But the quadratic form
from (2.114) has a minimal element x0 ∈ X where the derivative is null, that is,
2Ax0 + b + y − v − Au = 0. Consequently, we have

1

4

〈
A−1(v − y − v) − u,Au + y + b − v

〉≥ −2ε,

whenever 〈A−1y, y〉 ≤ 2ε.
Taking z = v − Au − b, we get

〈
A−1(y − z), y − z

〉≤ 8ε, if
〈
A−1y, y

〉≤ 2ε. (2.115)

Therefore it is necessary that 〈A−1z, z〉 ≤ 2ε. Indeed, if there exists z0 ∈ X such

that 〈A−1z0, z0〉 > 2ε, it follows that ‖A− 1
2 z0‖2 > 2ε. Hence, A− 1

2 z0 = (
√

2ε +
a)u0, where a > 0 and ‖u0‖ = 1. Taking y0 = −√

2ε A
1
2 u0, we have 〈A−1y0, y0〉 =

2ε, but 〈A−1(y0 − z0), y0 − z0〉 1
2 = ‖A− 1

2 (y0 − z0)‖ = 2
√

2ε + a > 2
√

2ε, which
contradicts (2.115). Thus, we proved that v = Au + b + z, where 〈A−1z, z〉 ≤ 2ε,
that is, v ∈ ∂εf (u). Hence, ∂εf is a maximal ε-monotone mapping.

Remark 2.89 Since A is a self-adjoint operator, we have

〈
A−1y, y

〉= 〈A− 1
2 y,A− 1

2
〉= ∥∥A− 1

2 y
∥
∥2

,

and so, 〈A−1y, y〉 ≤ 2ε if and only if y = √
2ε A

1
2 u, where ‖u‖ ≤ 1. Conse-

quently, (2.113) can be rewritten in the form

∂εf (x) = Ax + b + √
2ε A

1
2
(
S(0;1)

)
, ε ≥ 0, x ∈ X.

If A is the identity operator, we obtain

∂ε

(
1

2
‖ · ‖2

)

(x) = x + √
2ε S(0;1), ε ≥ 0, x ∈ X. (2.116)

It is obvious that the ε-subdifferential can be considered as an enlargement of
subdifferential satisfying a weak property of monotonicity. In the sequel, we prove
that the ε-subdifferential can be obtained by a special type of enlargement of subd-
ifferential. Firstly, we define the notion of ε-enlargement which was considered by
Revalski and Théra [54] in the study of some important properties of monotonicity.

Definition 2.90 Given an operator A : X → X∗ and ε ≥ 0, the ε-enlargement of A,
denoted by Aε , is defined by

Aεx = {x∗ ∈ X∗; (x − y, x∗ − y∗) ≥ −2ε, for all y∗ ∈ Ay
}
, x ∈ X. (2.117)

Proposition 2.91 Let A : X → X∗ be an arbitrary operator. Then, the following
properties are true:
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(i) Aεx is convex and w∗ closed for any x ∈ X.
(ii) A ⊂ Aε if and only if A is ε-monotone.

(iii) If A is ε-monotone, then A, convA, convA and A−1 are ε-monotone.
(iv) Aε1 ⊂ Aε2 if 0 ≤ ε1 ≤ ε2.
(v) If A is ε-monotone and locally bounded, then Ã and convÃ are ε-monotone,

where Ã : X → X∗ is defined as closure of GraphA in X × X∗ with respect to
strong, weak-star topology on X and X∗, respectively.

Proof Since properties (i)–(iv) are immediate from the definition of Aε , we confine
ourselves to prove (v). Let us consider (x, x∗), (y, y∗) ∈ Ã. Hence, there exist two
nets (xi, x

∗
i )i∈I ⊂ A such that xi → x, yi → y, strongly in X and x∗

i → x∗, y∗
i →

y∗, weak-star in X∗. Since A is an ε-monotone locally bounded operator, by passing
to the limit in the equality 〈x −y, x∗ −y∗〉 = 〈x −xi, x

∗
i −y∗

i 〉+〈yj −y, x∗
i −y∗

j 〉+
〈xi − yj , x

∗
i − y∗

j 〉 + 〈x − y, x∗
i − x∗

i 〉 + 〈x − y, y∗
j − y∗〉, we obtain 〈x − y, x∗ −

y∗〉 ≥ −2ε, that is, Ã is ε-monotone. According to property (iii), convÃ is also
ε-monotone. �

Concerning the maximality of an ε-monotone operator, we have the following
special case.

Proposition 2.92 If A is an ε-monotone operator, then Aε is ε-monotone if and
only if there exists a unique maximal ε-monotone operator which contains A.

Proof If B is an ε-monotone operator which contains A, then B ⊂ Aε , and so, if Aε

is ε-monotone, then Aε is the unique maximal ε-monotone operator. �

Generally, Aε is not an ε-monotone operator even if A is monotone. In the special
case A = ∂f , where f is a subdifferentiable function, the ε-enlargement (∂f )ε is
larger than the ε-subdifferential of f , that is, ∂εf ⊂ (∂f )ε . Generally, this inclusion
is strict. However, formula (2.111) remains true in the case of ε-enlargement of ∂f .
Firstly, it is obvious that x∗ ∈ Aεx for all ε > 0 if and only if (x∗ − y∗, x − y) ≥ 0,
for every y∗ ∈ Ay, and so, in the case of maximal monotone operator we have the
following result.

Proposition 2.93 If A is a maximal operator, then

Ax =
⋂

ε>0

Aεx, for all x ∈ X.

Corollary 2.94 If f is a proper convex lower-semicontinuous function, then

∂f (x) =
⋂

ε>0

(∂f )ε(x), for all x ∈ X. (2.118)

Now, we give a formula for ε-differential established by Martinez-Legaz and
Théra [44]. This formula proves that the ε-subdifferential can be considered as a
special type of enlargement of subdifferential.
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Theorem 2.95 Let X be a Banach space and f a lower-semicontinuous proper
convex function. Then

∂εf (x) =
{

x∗ ∈ X∗; (x∗, x0 − x) +
m−1∑

i=0

(x∗
i , xi+1 − xi) + (x∗

m; x − xm) ≤ ε

for all x∗
i ∈ ∂f (xi), i = 0,1, . . . ,m

}

, (2.119)

where x ∈ Dom(f ) and ε > 0.

Proof According to the proof of Theorem 2.46, for a fixed element x0 ∈ D(∂f ),
taking x∗

0 ∈ ∂f (x0), we have

f (x) = f (x0)

+ sup

{
n−1∑

i=0

(x∗
i , xi+1 − xi) + (x∗

n, x − xn); x∗
i ∈ ∂f (xi), i=1, n, n ∈ N∗

}

,

for all x ∈ Dom(f ). Therefore, for any η > 0 there exist a finite set {xi; i = 1, n} ⊂
D(∂f ) and x∗

i ∈ ∂f (xi), i = 1, n, such that

n−1∑

i=0

(x∗
i , xi+1 + xi) + (x∗

n, x − xn) > f (x) − f (x0) − η.

Thus, if x∗ is an element belonging to the right-hand side of formula (2.119),
we have

f (x) − f (x0) − η ≤ (x∗, x − x0) + ε, for all η > 0,

that is,

f (x) − f (x0) ≤ (x∗, x − x0) + ε, for every x0 ∈ D(∂f ).

Now, since D(∂f ) is a dense subset of Dom(f ) (see Corollary 2.44), by lower-
semi-continuity this inequality holds for every x0 ∈ Dom(f ), and so, x∗ ∈ ∂εf (x).

Conversely, if x∗ ∈ ∂εf (x), since ∂f is cyclically monotone (see Defini-
tion 2.45), by Definition 2.104 of the ε-subdifferential it is easy to see that x∗
satisfies the inequality of the right-hand side of formula (2.119), thereby proving
Theorem 2.95. �

Remark 2.96 The multivalued operator defined by the right-hand side of (2.119)
can be considered the ε-enlargement cyclically monotone of ∂f .
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2.2.7 Subdifferentiability in the Quasi-convex Case

Here, we consider the special case of quasi-convex functions. (See Sect. 2.1.1.) We
recall that a function is quasi-convex lower-semicontinuous if and only if its level
sets are closed convex sets. Thus, similarly to the convex case, if the role of epigraph
is replaced by level sets, the continuous linear functionals that describe the closed
semispaces whose intersection is a certain level set are candidates for the approx-
imative quasi-subdifferentials (see Theorem 1.48). Given a function f and λ ∈ R,
we denote by Nλ(f ) the corresponding level set, that is,

Nλ(f ) = {x ∈ X; f (x) ≤ λ
}
. (2.120)

Let us consider the following sets:

Dλf (x0) = {(x∗, δ) ∈ X∗ × (0,∞); x∗(x0 − x) ≥ δ whenever f (x) ≤ λ
}
,

(2.121)
for every x0 ∈ X and λ ∈ R.

It is obvious that, if Dλf (x0) �= ∅, then f (x0) > λ. Indeed, if we suppose that
f (x0) ≤ λ, then, for an element (x∗, δ) ∈ Dλf (x0), we have 0 = x∗(x0 − x0) ≥ δ,
which is a contradiction with the choice of δ.

Definition 2.97 The projection of Dλf (x0) on X∗ is called the λ-quasi-
subdifferential of f at x0 and is denoted by ∂λ

q f (x0).

Taking into account the correspondence between the convexity and quasi-
convexity, we see that this type of approximate subdifferential is proper to the quasi-
convex functions.

Indeed, it is well known that a function f is convex if and only if the associated
function Ff : X ×R→ R defined by

Ff (x, t) = f (x) − t, (x, t) ∈ X ×R, (2.122)

is quasi-convex, since Nλ(Ff ) = −(0, λ) + epif , for all λ ∈R. Thus, we have

DλFf (x0, t0) = {(x∗, α, δ) ∈ X∗ ×R× (0,∞); x∗(x0 − x) + α(t0 − t) ≥ δ,

whenever f (x) − t ≤ λ
}
.

By a simple calculation, we find that (x∗, α, δ) ∈ DλFf (x0, t0) if α = 0 and
sup{(x∗, x);x ∈ Dom(f )} ≤ x∗(x0) − δ or α < 0 and −x∗

α
∈ ∂ε0f (x0), where

ε0 = f (x0) − t0 − λ − δ
α

. We recall that, necessarily, we must have f (x0) − t0 =
Ff (x0, t0) > λ, α ≤ 0, whenever DλFf (x0, t0) �= ∅.

Therefore, the projection on X∗ contains elements of approximative subdifferen-
tial defined for convex functions. More precisely, (x∗,−1, δ) ∈ DλFf (x0,0) if and
only if x∗ ∈ ∂ε0f (x0), ε0 = f (x0) − t0 − λ > 0, x0 ∈ Dom(f ).

Now, we can establish the following characterization of quasi-convex lower-
semicontinuous functions.



122 2 Convex Functions

Theorem 2.98 A function f : X → R is quasi-convex and lower-semicontinuous
if and only if, for all λ ∈ R and x0 ∈ X such that f (x0) > λ, the set Dλf (x0) is
nonempty.

Proof According to Theorem 1.48, the function f is quasi-convex and lower-
semicontinuous if and only if its level sets can be represented as an intersection
of closed half-spaces.

Equivalently, for every x0 ∈Nλ(f ) there exists a closed hyperplane strongly se-
parating Nλ(f ) and x0. Thus, if f (x0) > λ, there exist x∗ ∈ X∗ \ {0} and k ∈ R such
that x∗(x0) > k and x∗(x) ≤ k for all x ∈ Nλ(f ). Taking δ = x∗(x0) − k > 0, we
obtain x∗(x − x0) ≤ −δ for all x ∈ Nλ(f ), equivalently (x∗, δ) ∈ Dλf (x0). This
finishes the proof of Theorem 2.98. �

Corollary 2.99 A proper function f : X → R is quasi-convex and lower-semicon-
tinuous if and only if ∂λ

q f (x0) �= ∅ for all x0 ∈ X, λ ∈ R, with f (x0) > λ.

Now, it is easy to see that the λ-quasi-subdifferential of a function f can also be
defined by the formula

∂λ
q f (x0) =

{
x∗ ∈ X∗; sup

x∈Nλf

x∗(x − x0) < 0
}
. (2.123)

Proposition 2.100 Let us consider f : X → R, x0 ∈ X, f (x0) �= −∞, ε > 0. Then
the following properties are equivalent:

(i) x0 is an ε-minimum element of f .
(ii) ∂λ

q f (x0) = X∗, whenever λ < f (x0) − ε.
(iii) 0 ∈ ∂λ

q f (x0), whenever λ < f (x0) − ε.

Proof If there exists x1 ∈ X such that f (x1) < f (x0) − ε, then, taking λ = f (x1),
we have Nλ(f ) �= ∅ and so, 0∈∂λ

q f (x0). On the other hand, if 0 ∈ ∂λ
q f (x0), then,

for all λ < f (x0) − ε, we get Nλ(f ) = ∅, that is, f (x) ≥ f (x0) − ε for all x ∈ X.
Also, (ii) and (iii) are obviously equivalent. �

In the following, we establish some relationships between the quasi-subdiffe-
rential defined by (2.123) and other two notions of quasi-subdifferentials introduced
as extensions to the case quasi-convex of the subdifferential of a convex function.
We denote

∂λ
GPf (x0) = {x∗ ∈ X∗; x∗(x − x0) < 0 if f (x) < λ

}
, x0 ∈ X, (2.124)

∂M–Lf (x0) = {x∗ ∈ X∗; there exists k ∈ K such that k ◦ x∗ ≤ f

and k
(
x∗(x0)

)= f (x0)
}
, x0 ∈ X, (2.125)

where K is a given family of functionals k ∈ R → R closed under pointwise supre-
mum.
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If λ = f (x0) ∈ R, the λ-quasi-subdifferential (2.124) was introduced by Green-
berg and Pierskalla [23] for X = R

n, while the quasi-subdifferential (2.125) was
introduced by Martinez-Legaz and Sach [43]. It is well known that ∂GPf (x0) =
∂Kf (x0) if K is the family of all nondecreasing functions.

The λ-quasi-subdifferential associated to the quasi-subdifferential (2.125) is de-
fined as follows:

∂λ
M–Lf (x0) = {x∗ ∈ X∗; there exists k ∈ K such that k ◦ x∗ ≤ f

and k
(
(x∗)(x0)

)≥ λ
}
. (2.126)

Proposition 2.101 Let K be the family of all nondecreasing functions k : R → R.
If f : X →R, x0 ∈ X and λ ∈R, then

∂λ
GPf (x0) = ∂λ

M–Lf (x0).

Proof From the definition of ∂λ
M–L given by (2.126), we obtain the inclusion

∂λ
M–Lf (x0) ⊂ ∂λ

GPf (x0). Conversely, if x∗ ∈ ∂λ
GPf (x0), taking k : R → R defined

by

k(t) = inf
{
a; x∗(x) ≥ t if f (x) < a

}
,

we have k(x∗(x)) ≤ a whenever f (x) < a. But k is obvious a nondecreasing func-
tion, and so k ◦ x∗ ≤ f . Also, k(x∗(x0)) ≥ λ. Hence, x∗ ∈ ∂λ

M–Lf (x0) and the proof
is complete. �

Proposition 2.102 Let K be the family of all nondecreasing lower-semicontinuous
functions. If f : X →R, x0 ∈ X, λ1, λ2 ∈R and λ1 > λ2, then

(i) ∂
λ1
M–Lf (x0) ⊂ ∂

λ2
q f (x0) ⊂ ∂

λ2
M–Lf (x0).

(ii)
⋂

λ<f (x0)
∂λ
q f (x0) =⋂λ<f (x0)

∂λ
M–Lf (x0) = ∂M–Lf (x0), if f (x0) ∈R.

Proof Equality (ii) follows by using (i) and the equality
⋂

λ<f (x0)

∂λ
q f (x0) = ∂M–Lf (x0).

Now, if x∗ ∈ ∂λ
q f (x0), taking the function k defined in the proof of Proposi-

tion 2.101, we notice that k is also lower-semicontinuous. Hence, k(x∗(x)) ≤ a

if f (x) < a, and so, k ◦ x∗ ≤ f . Since supx∈Nλ(f ) x
∗(x − x0) < 0, it follows that

k(x∗(x0)) ≥ λ. Hence, ∂λ
q f (x0) ⊂ ∂λ

M–Lf (x0). On the other hand, if ∂λ
M–Lf (x0) = ∅

or Nλ(f ) = ∅, then the inclusion of the left-hand side of (i) is obvious. Let us sup-
pose that Nλ(f ) �= ∅. Thus, if x∗ ∈ ∂

λ1
M–Lf (x0), we have k(x∗(x)) − k(x∗(x0)) <

λ − λ1, for all x, such that f (x) ≤ λ. Let us denote α = supx∈Nλ(f ) x
∗(x − x0)

and consider a net (xi) ⊂ Nλ(f ) such that x∗(xi) → supx∈Nλ(f ) x
∗(x). Since

k(x∗(xi)) − k(x∗(x0)) < λ − λ1, by passing to the limit we obtain

k
(
x∗(x0) + α

)− k
(
x∗(x0)

)≤ λ − λ1 < 0.
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Hence, α < 0 and so, x∗ ∈ ∂λ
q f (x0). Thus, Proposition 2.102 is completely

proved. �

2.2.8 Generalized Gradients

In this section, we briefly present a theory of generalized gradients for lower-
semicontinuous functions of Rn due to Clarke [17]. This theory is still under de-
velopment but some significant results have already become known.

Assume first that f : Rn → R is a locally Lipschitz function. According to
Rademacher’s theorem, f is a.e. differentiable on R

n. By definition, the general-
ized gradient of f at x, denoted by ∂f (x), is the convex hull of the set of points of
the form {limn→∞ ∇f (x + xn)}, where xn → 0 and ∇f (x + xn) (the gradient of f

at x + xn) exist.
In order to extend this definition to general lower-semicontinuous functions, we

consider a closed subset C of Rn and denote by dC(x) the distance from x to C,
that is,

dC(x) = inf
{‖x − y‖; y ∈ C

}
.

Since dC is locally Lipschitz, we may define ∂dC . By analogy with the case when
C is convex, we define the cone of normals to C at x, denoted N(x;C), the closure
of the set

{
z ∈ R

n; λz ∈ ∂dC(x) for some λ > 0
}
. (2.127)

We observe that, if C is convex, then, by Theorem 2.58, where f = IC , it follows
that dC is differentiable outside C and

∇dC(x) = (x − PC(x)
)∥
∥x − PC(x)

∥
∥−1

, x ∈ C,

where PC is the projection operator on C (we take the Euclidean norm on R
n).

Hence, for all x ∈ R
n, we have

∇dC(x) ∈ ∂IC(PCx)

and, therefore, if C is convex, then N(x;C) is just the cone of normals to C at x

(see Example 2.31).
It is obvious that, if f is continuously differentiable on a neighborhood of x, then

∂f (x) = ∇f (x). If f is convex, then its epigraph E(f ) is a convex closed subset
of Rn+1 and, as observed earlier, N((x,f (x));E(f )) = NE(f )(x;f (x)). Hence, in
this case, ∂f (x) is the set of all subgradients of f at x (here, E(f ) = epif ).

Given the lower-semicontinuous function f : Rn → R, we define the upper
derivative of f at x with respect to y, as

f ↑(x, y) = lim
x′→x

f (x′)→f (x)

λ↓0

inf
y′→y

f (x′ + λy′) − f (x′)
λ

. (2.128)

It should be observed that, if f is convex, then f ↑ = f ′.
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Now, let x be a point where f (x) is finite.
We define

∂f (x) = {z ∈R
n; (z,−1) ∈ N

((
x,f (x)

);E(f )
)}

and call ∂f (x) the generalized gradient of f at x.

Proposition 2.103 The generalized gradient ∂f (x) is also given by

∂f (x) = {z ∈ R
n; f ↑(x, y) ≥ (y, z), ∀y ∈R

n
}
. (2.129)

If f ↑(x,0) = −∞, then ∂f (x) is empty, but otherwise ∂f (x) �= ∅ and one has

f ↑(x, y) = max
{
(y, z); z ∈ ∂f (x), ∀y ∈R

n
}
. (2.130)

The reader will be aware of the analogy between Propositions 2.39 and 2.103.
Formula (2.129) represents another way (due to Rockafellar) to define the gener-
alized gradient. The proof of Proposition 2.103, which is quite technical, can be
found in the work of Rockafellar [64] (see also [65, 66]). In this context, the works
of Hirriart-Urruty [25, 26] must be also cited. The above definition of generalized
gradient can be extended to infinite-dimensional Banach space. For instance, if X is
a Banach space and f : X → R a locally Lipschitz function, we define the general-
ized directional derivative of f at x in the direction z, denoted by f 0(x, z) by

f 0(x, z) = lim sup
x′→x
λ↓0

f (x ′ + λz) − f (z)

λ
.

If X = R
n, then f 0 = f ↑.

It is easy to see that f 0 is a positively homogeneous and subadditive function
of z. Thus, by the Hahn–Banach theorem, we may infer that there exists at least one
x∗ ∈ X∗ satisfying

f 0(x, z) ≥ (z, x∗) for all z ∈ X. (2.131)

By definition, the generalized gradient of f at x, denoted by ∂f (x) is the set of all
x∗ ∈ X∗ satisfying (2.131).

It is readily seen that, for every x ∈ X, ∂f (x) is a nonempty, closed, convex
and bounded subset of X∗, thus ∂f (x) is w∗-compact. Moreover, ∂f is w∗-upper-
semicontinuous, that is, if ηi ∈ ∂f (x), where ηi → η weak-star in X∗ and xi → x

strongly in X, then η ∈ ∂f (x) (see Clarke [18]). Note also that f 0(x, ·) is the support
functional of ∂f (x), that is, for any z in X, we have (compare with (2.130))

f 0(x, z) = max
{
(z, x∗); x∗ ∈ ∂f (x)

}
.

For the definition and the properties of generalized gradient of vectorial functions
defined on Banach spaces, we refer the reader to the work of Thibault [73].
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2.3 Concave–Convex Functions

This section is concerned mainly with minimax problems for concave–convex func-
tions. This subject is discussed in some detail in Sect. 2.3.3. Relevant to it are the
closed saddle functions studied in Sect. 2.3.2.

2.3.1 Saddle Points and Mini-max Equality

Let X,Y be two nonempty sets and let F be an extended real-valued function on the
product set X × Y .

It is easy to prove that we always have

sup
x∈X

inf
y∈Y

F (x, y) ≤ inf
y∈Y

sup
x∈X

F(x, y). (2.132)

If the equality holds, the common value is called the saddle value of F on X × Y .
Furthermore, we shall require that the supremum from the left side and the infimum
from the right side are actually achieved. In this case, we say that F verifies the
mini-max equality on X × Y and we denote this by

max
x∈X

min
y∈Y

F (x, y) = min
y∈Y

max
x∈X

F(x, y).

Of course, the mini-max equality holds if and only if the following three condi-
tions are satisfied:

(i) F has saddle value, that is, supx∈X infy∈Y F (x, y) = infy∈Y supx∈X F(x, y).
(ii) There is x̃ ∈ X such that infy∈Y F (x̃, y) = supx∈X infy∈Y F (x, y).

(iii) There is ỹ ∈ Y such that supx∈X F(x, ỹ) = infy∈Y supx∈X F(x, y).

Clearly, F(x̃, ỹ) is the saddle value of F . Also, supx∈X F(x, ỹ) and
infy∈Y F (x̃, y) are attained, respectively, at x̃ and ỹ since, from conditions (ii) and
(iii), one easily obtains

sup
x∈X

inf
y∈Y

F (x, y) = inf
y∈Y

F (x̃, y) ≤ F(x̃, ỹ) ≤ sup
x∈X

F(x, ỹ) = inf
y∈Y

sup
x∈X

F(x, y).

According to condition (i), this inequality becomes an equality. Moreover, we
obtain

sup
x∈X

F(x, ỹ) = F(x̃, ỹ) = inf
y∈Y

F (x̃, y)

from which we obtain

F(x, ỹ) ≤ F(x̃, ỹ) ≤ F(x̃, y), ∀(x, y) ∈ X × Y. (2.133)

Definition 2.104 The pair (x̃, ỹ) ∈ X×Y is said to be a saddle point for the function
F : X × Y → R if relation (2.133) holds.
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Thus, the mini-max equality implies the existence of a saddle point.
It is easily proven that the converse of this statement is also true. Indeed,

from (2.133), we have

inf
y∈Y

sup
x∈X

F(x, y) ≤ sup
x∈X

F(x, ỹ) ≤ inf
y∈Y

F (x̃, y) ≤ sup
x∈X

inf
y∈Y

F (x, y),

which, by (2.132), implies conditions (i), (ii) and (iii). Thus, the following funda-
mental result holds.

Proposition 2.105 A function satisfies the mini-max equality if and only if it has a
saddle point.

2.3.2 Saddle Functions

The purpose of this section is to present a new class of functions (that is, functions
which are partly convex and partly concave), which are closely related to extremum
problems.

We assume in everything that follows that X and Y are real Banach spaces with
duals X∗ and Y ∗. For the sake of simplicity, we use the same symbol ‖ · ‖ to denote
the norms ‖ · ‖X , ‖ · ‖Y , ‖ · ‖X∗ and ‖ · ‖Y ∗ in the respective spaces X,Y,X∗ and Y ∗.
As usual, we use the symbol (·, ·) to denote the pairing between X,X∗ and Y,Y ∗,
respectively. If f is an arbitrary convex function on X, then we use the symbol clf
to denote its closure (see Sect. 2.1.3). For a concave function g, the closure clg is
defined by

clg = − cl(−g).

Definition 2.106 By a saddle function on X × Y , we mean an extended real-valued
function K defined everywhere, such that K(x,y) is a concave function of x ∈ X

for each y ∈ Y , and a convex function of y ∈ Y for each x ∈ X.

Given a saddle function K on X×Y , we denote by cl1 K the function obtained by
closing K(x,y) as a concave function of x for each y. Similarly, cl2 K is obtained
by closing K(x,y) as a convex function of y for each x.

Definition 2.107 A saddle function K is said to be closed if the following condi-
tions hold:

cl1 cl2 K = cl1 K, cl2 cl1 K = cl2 K. (2.134)

It should be observed that conditions (2.134) automatically hold if K(x,y) is
upper-semicontinuous in x and lower-semicontinuous in y. Two saddle functions K

and K ′ are said to be equivalent if

cl1 K = cl1 K ′ and cl2 K = cl2 K ′.
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In other words, the saddle function K is closed if cl1 K and cl2 K are equivalent
to K .

It is worth mentioning that equivalent saddle functions have the same saddle
value and saddle points (if any). In fact, let K be an arbitrary saddle function on
X ×Y . Inasmuch as the infimum of a convex function is the same as the infimum of
its closure, one obtains

inf
{
K(x,y); y ∈ Y

}= inf
{
cl2 K(x,y); y ∈ Y

}
for every x ∈ X, (2.135)

and, similarly,

sup
{
K(x,y); x ∈ X

}= sup
{
cl1 K(x,y); x ∈ X

}
for every y ∈ Y. (2.136)

Hence, if (x0, y0) is a saddle point of K , that is,

K(x,y0) ≤ K(x0, y0) ≤ K(x0, y) for all (x, y) ∈ X × Y,

we have

sup
{
cl1 K(x,y0); x ∈ X

}= K(x0, y0) = inf
{
cl2 K(x0, y); y ∈ Y

}

and therefore for any saddle function K ′ equivalent with K ,

sup
{
K ′(x, y0); x ∈ X

}= K(x0, y0) = inf
{
K ′(x0, y); y ∈ K

}
,

which implies that K(x0, y0) = K ′(x0, y0), and therefore (x0, y0) is a saddle point
of K ′.

Let K be a saddle function on X × Y and let

D1(K) = {x ∈ X; K(x,y) > −∞ for every y ∈ Y
}
, (2.137)

D2(K) = {y ∈ Y ; K(x,y) < +∞ for every x ∈ X
}
. (2.138)

It is easy to see that D1(K) and D2(K) are convex sets. The set

domK = D1(K) × D2(K) (2.139)

is called the effective domain of K . Obviously, K is finite on domK and, if K is
finite everywhere, one has domK = X × Y .

As an example, let A and B be nonempty convex sets in X and Y , respectively,
and let

K(x,y) =

⎧
⎪⎨

⎪⎩

K0(x, y), if x ∈ A and y ∈ B,

+∞, if x ∈ A and y ∈B,

−∞, if x ∈A and y ∈ Y,

(2.140)

where K0 is any finite saddle function on A × B . Then, K is a saddle function on
X × Y with

domK = A × B.
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A saddle function K : X × Y →R = [−∞,+∞] is called proper if domK �= ∅.
Most of the results which are proved below closely resemble the corresponding

properties of lower-semicontinuous convex functions previously established.

Theorem 2.108 Let K be a closed proper saddle function on X × Y . Then

(i) For every y ∈ intD2(K), the function K(·, y) is concave, upper-semicontinuous
and proper on X. Furthermore, its effective domain coincides with D1(K).

(ii) For every y ∈ intD1(K), the function K(x, ·) is convex, lower-semicontinuous
and proper on Y , and its effective domain is D2(K).

Proof (i) The closedness of K implies that cl1 cl2 K = cl1 K . Hence

cl1 K(x,y) = lim
ε→0

sup
‖x−u‖≤ε

cl2 K(u,y) for every y ∈ D2(K).

We set

ϕε(x, y) = sup
‖x−u‖≤ε

cl2 K(u,y).

Since cl2 K ≤ cl1 K and the function x → cl1 K(x,y), x ∈ X, is upper-semicontin-
uous and concave on X, we may infer that

ϕε(x, y) < +∞ for every x ∈ X and y ∈ D2(K). (2.141)

Here, we have used in particular Corollary 2.6. On the other hand, ϕε(x, y) is lower-
semicontinuous and convex as a function of y, because this is true for each of the
functions cl2 K(u, ·). Therefore, ϕε(x, y) is, for any ε > 0, a continuous function
of y ∈ intD2(K) (see Proposition 2.16). But this function majorizes the convex
function cl1 K(x, ·), and hence we may conclude that the latter is also continuous
on intD2(K). Of course, cl1 K ≥ K ≥ cl2 K , while the closedness of K implies that
cl2 K = cl2 cl1 K . From the latter relation, we have

cl1 K(x,y) = cl2 K(x,y) for every x ∈ X and y ∈ intD2(K),

hence

K(x,y) = cl1 K(x,y) for every x ∈ X and y ∈ intD2(K).

Hence, K(·, y) is concave and upper-semicontinuous for every y ∈ intD2(K). Ob-
viously, the effective domain of this function includes D1(K). We shall prove that
it is just D1(K). To this end, let x0 ∈ X be such that K(x0, y0) > −∞, where y0 is
arbitrary but fixed in intD2(K).

Therefore, the convex function y → cl2 K(x0, y), y ∈ Y , is not identically −∞
which shows that cl2 K(x0, y) is nowhere −∞. This implies that x0 ∈ D1(K), as
claimed. The proof of part (ii) is entirely similar to that of part (i), so that it is
omitted.



130 2 Convex Functions

Given a saddle function K : X × Y → R, we denote by ∂yK(x, y) the set of
all subgradients of K(x, ·) at y and by −∂xK(x, y) the set of all subgradients of
−K(·, y) at x. In other words,

∂yK(x, y) = {y∗ ∈ Y ∗; K(x,y) ≤ K(x,y) + (y − v, y∗), ∀v ∈ Y
}
, (2.142)

∂xK(x, y) = {x∗ ∈ X∗; K(u,y) ≤ K(x,y) + (u − x, x∗), ∀u ∈ X
}
. (2.143)

The multivalued operator ∂K : X × Y → X∗ × Y ∗ defined by

∂K(x, y) = {−∂xK(x, y), ∂yK(x, y)
}
, (x, y) ∈ X × Y, (2.144)

is called the subdifferential of the saddle function K .
It should be observed that the concave–convex function K has a saddle point

(x0, y0) if and only if

(0,0) ∈ ∂K(x0, y0). (2.145)

�

Proposition 2.109 Let K be a proper saddle function on X × Y . The multivalued
mapping ∂K : X × Y → X∗ × Y ∗ is a monotone operator with

D(∂K) ⊂ domK. (2.146)

Proof Let (x∗
1 , y∗

1 ) ∈ ∂K(x1, y1) and (x∗
2 , y∗

2 ) ∈ ∂K(x2, y2). By definition,

−K(x,y1) ≥ −K(x1, y1) + (x − x1, x
∗
1 ), ∀x ∈ X, (2.147)

K(x1, y) ≥ K(x1, y1) + (y − y1, y
∗
1 ), ∀y ∈ Y, (2.148)

−K(x,y2) ≥ −K(x2, y2) + (x − x2, x
∗
2 ), ∀x ∈ X, (2.149)

K(x2, y) ≥ K(x2, y2) + (y − y2, y
∗
2 ), ∀y ∈ Y. (2.150)

Since (x, y) is arbitrary, we have −K(x1, y1) < +∞ from relation (2.147) and
K(x1, y1) < +∞ from relation (2.148). Hence, K(x1, y1) is finite, and from condi-
tions (2.147) and (2.148), we have (x1, y1) ∈ domK , establishing relation (2.146).
Taking x = x2 in (2.147), y = y2 in (2.148), x = x1 in (2.149), and y = y1 in (2.150),
by adding the four inequalities we obtain

(x∗
1 − x∗

2 , x1 − x2) + (y∗
1 − y∗

2 , y1 − y2) ≥ 0,

which means that ∂K is a monotone operator (see Sect. 1.4.1). �

Corollary 2.110 Let K be a proper closed saddle function on X × Y . Then

int domK ⊂ D(∂K) ⊂ domK. (2.151)
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Proof Let (x, y) ∈ int domK . Thus, x ∈ intD1(K) and y ∈ intD2(K), so that The-
orem 2.108 together with Corollary 2.38 imply that K is subdifferentiable at (x, y),
establishing (2.151). �

Corollary 2.111 Let K be a proper and closed saddle function on X × Y . Then K

is continuous on int domK .

Proof From Theorem 1.144, and Corollary 2.110, it follows that the monotone oper-
ator ∂K is locally bounded on int domK ⊂ intD(∂K). Let (x0, y0) be any element
in int domK . By definition, for all (x × Y , one has

K(x0, y0) − K(x,y) ≤ (y0 − y, y∗
0 ) + (x − x0, x

∗) (2.152)

and

K(x,y) − K(x0, y0) ≤ (y − y0, y
∗) + (x0 − x, x∗

0 ), (2.153)

where (x∗
0 , y∗

0 ) ∈ ∂K(x0, y0) and (x∗, y∗) ∈ ∂K(x, y). Since ∂K is locally bounded
at (x0, y0), there exist ρ > 0 and C > 0 such that

‖x∗‖ + ‖y∗‖ ≤ C for ‖x − x0‖ < ρ and ‖y − y0‖ < ρ.

Inserting this in relations (2.152) and (2.153), it follows that
∣
∣K(x0, y0) − K(x,y)

∣
∣≤ C1

(‖x − x0‖ + ‖y − y0‖
)
,

for all (x, y) ∈ X × Y such that ‖x − x0‖ < ρ and ‖y − y0‖ < ρ. Here, C1 is a pos-
itive constant independent of x and y. Thus, we have shown that K is Lipschitzian
in a neighborhood of (x0, y0). The proof of Corollary 2.111 is complete. �

The results presented above bring out many connections between closed saddle
functions and lower-semicontinuous functions. The most important fact is stated in
Theorem 2.112 below.

Theorem 2.112 The formulas

L(x, y∗) = sup
{
(y, y∗) − K(x,y); y ∈ Y

}
, (2.154)

K(x,y) = sup
{
(y, y∗) − L(x, y∗; y∗ ∈ Y

}
(2.155)

define a one-to-one correspondence between the lower-semicontinuous proper con-
vex functions L on the space X × Y ∗ and the closed saddle functions K on X × Y

satisfying

cl2 cl1 K = K. (2.156)

Moreover, under this correspondence, one has

(x∗, y∗) ∈ ∂K(x, y) ⇐⇒ (−x∗, y) ∈ ∂L(x, y∗). (2.157)
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Proof Let L : X × Y ∗ → ]−∞,+∞] be convex, lower-semicontinuous and non-
identically +∞ on X × Y ∗. Formula (2.155) says that K is he partial conjugate of
L and this implies that the function K(x,y) is convex and lower-semicontinuous
in y on Y . Furthermore, it follows that L(x, ·) is in turn the conjugate of K(x, ·),
establishing formula (2.154). Lastly, a simple calculation involving relation (2.155)
and the convexity of L on X × Y ∗ implies that K(x,y) is concave as a function of
x on X. We leave the simple details to the reader. Now, we prove that K defined by
formula (2.155) satisfies condition (2.156). To this end, we consider the conjugate
L∗ : X∗ × Y → ]−∞,+∞] of L, that is,

L∗(x∗, y) = sup
{
(x, x∗) + (y, y∗) − L(x, y∗); x ∈ X, y∗ ∈ Y ∗}.

According to relation (2.155), we get

L∗(x∗, y) = sup
{
(x, x∗) + K(x,y); x ∈ X

}
. (2.158)

Hence,

cl1 K(x,y) = − sup
{
(x, x∗) − L∗(x∗, y); x∗ ∈ X∗}. (2.159)

But L = L∗∗, because L is lower-semicontinuous. In other words,

L(x, y∗) = sup
{
(x, x∗) + (y, y∗) − L∗(x∗, y); x∗ ∈ X∗, y ∈ Y ∗}.

Hence, by equality (2.159), we must have

L(x, y∗) = sup
{
(y, y∗) − cl1 K(x,y); y ∈ Y

}
,

and therefore

cl2 cl1 K(x,y) = sup
{
(y, y∗) − L(x, y∗); y∗ ∈ Y ∗}.

Combining this with relation (2.155), we obtain

cl2 cl1 K(x,y) = K(x,y) for every (x, y) ∈ X × Y,

as claimed.
Next, we assume that K is any closed proper saddle function on X×Y which sat-

isfies condition (2.156). First, we note that the function L defined by formula (2.154)
is convex on the product space X × Y ∗. Furthermore, since domK �= ∅, we must
have

L(x, y∗) > −∞ for every (x, y∗) ∈ X × Y ∗

and L �≡ +∞. It remains to be proved that L is lower-semicontinuous on X × Y ∗.
Let L∗ be the conjugate of L. One has

clL(x, y∗) = sup
{
(x, x∗) + (y, y∗) − L∗(x∗, y); x∗ ∈ X∗, y ∈ Y

}
.
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Combining this with equality (2.159), we obtain

clL(x, y∗) = sup
{
(y, y∗) − cl1 K(x,y); y ∈ Y

}

= sup
{
(y, y∗) − cl2 cl1 K(x,y); y ∈ Y

}
,

which is equivalent to

clL(x, y∗) = sup
{
(y, y∗) − K(x,y); y ∈ Y

}= L(x, y∗)

in view of relations (2.156) and (2.154). Thus, L is lower-semicontinuous on X×Y ∗.
In order to verify relation (2.157), we fix any (x∗, y∗) in ∂K(x, y) and use the

definition of ∂xK(x, y). Then

−(x∗, x − x1) + (y, y∗ − y∗
1 ) ≥ −K(x,y) + K(x1, y) + (y, y∗ − y∗

1 )

for all x1 ∈ X, y∗
1 ∈ Y ∗. (2.160)

From relation (2.154), we have

K(x1, y) − (y, y∗
1 ) ≥ −L(x1, y

∗
1 ) (2.161)

while (2.142) implies that

K(x,y) + L(x, y∗) = (y, y∗) (2.162)

because y → K(x,y) is the conjugate of the proper convex function L(x, ·) (see
Proposition 2.33). Adding relations (2.161) and (2.162) and substituting the result
in (2.160), one obtains

−(x∗, x − x1) + (y, y∗ − y∗
1 ) ≥ L(x, y∗) − L(x1, y

∗
1 ), (2.163)

for all x1 ∈ X and y∗
1 ∈ Y ∗. In other words, we have proved that (−x∗, y) ∈

∂L(x, y∗). It remains to be proved that (−x∗, y) ∈ ∂L(x, y∗) implies that (x∗, y∗) ∈
∂K(x, y). This follows by using a similar argument, but the details are omitted. �

Remark 2.113 The closed saddle function K associated with a convex and lower-
semicontinuous function L are referred to in the following as the Hamiltonian func-
tion corresponding to L.

Given any closed and proper saddle function K on X ×Y , there always exists an
equivalent closed saddle function K ′ which satisfies condition (2.156). An exam-
ple of such a function could be K ′ = cl2 K . This fact shows that formulas (2.154)
and (2.155) define a one-to-one correspondence between the equivalence classes
of closed proper saddle functions K on X × Y and lower-semicontinuous, proper
convex functions L on X × Y ∗.

Theorem 2.114 below may be compared most closely to Theorem 2.43.
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Theorem 2.114 Let Y be a reflexive Banach space and let K : X × Y → R be a
proper, closed saddle function on X×Y . Then the operator ∂K : X×Y → X∗ ×Y ∗
is maximal monotone.

Proof It should be observed that, if K ′ is a saddle function equivalent to K ,
then ∂K ′ = ∂K . Indeed, as observed earlier, (x∗

0 , y∗
0 ) ∈ ∂K(x0, y0) if and only

if (x0, y0) is a saddle point of the function (x, y) → K(x,y) + (x, x∗
0 ) − (y, y∗

0 )

which is in turn equivalent to (x, y) → K ′(x, y) + (x, x∗
0 ) − (y, y∗

0 ). Since two
equivalent closed saddle functions have the same saddle points, we conclude that
(x∗

0 , y∗
0 ) ∈ ∂K ′(x0, y0), as claimed. Thus, replacing, if necessary, the function K by

cl2 K , we may assume that the concave–convex function satisfies condition (2.156)
in Theorem 2.112. If Y is reflexive, then X ×Y ∗ is a Banach space, whose dual may
be identified with X∗ ×Y . Since the function L defined by formula (2.154) is convex
and lower-semicontinuous on X × Y ∗, its subdifferential ∂L is maximal monotone
(see Theorem 2.43) from X ×Y ∗ into X∗ ×Y . Hence, using relation (2.157), ∂K is
also maximal monotone. �

Remark 2.115 Theorem 2.114 follows also in the case when X rather than Y is
reflexive, by replacing K by −K .

Corollary 2.116 Let X and Y be two reflexive Banach spaces, and let K : X×Y →
R be a proper, closed saddle function on X × Y . Then, the domain D(∂K) of the
operator ∂K is a dense subset of domK .

Proof Let (x0, y0) be any element of domK , and let (xλ, yλ) ∈ X × Y be such that

F1(xλ − x0) − λ∂xK(xλ, yλ) � 0, λ > 0, (2.164)

F2(yλ − y0) − λ∂yK(xλ, yλ) � 0, λ > 0, (2.165)

where F1 : X → X∗ and F2 : Y → Y ∗ are duality mappings of X and Y , re-
spectively. Since ∂K is maximal monotone and the operator (x, y) → (F1(x −
x0),F2(y −y0)) is monotone, coercive and demicontinuous from X×Y to X∗ ×Y ∗
(without any loss of generality, we may assume that X and Y as well as their duals
are strictly convex), the above equation has at least one solution (xλ, yλ) ∈ D(∂K)

(see Corollary 1.140). We multiply the first equation by xλ − x0, the second by
yλ − y0 and add the results; thus, we obtain

(
F1(xλ − x0), xλ − x0

)+ (F2(yλ − y0), yλ − y0
)

≤ λ
(
K(xλ, y0) − K(x0, yλ)

)
, for all λ > 0. (2.166)

Inasmuch as (x0, y0) ∈ domK , the functions x → −K(x,y0) and y → K(x0, y) are
convex and not identically +∞ on X and Y , respectively. Thus, these functions are
bounded from below by affine functions (see Proposition 2.20). This fact implies

‖xλ − x0‖2 + ‖yλ − y0‖2 ≤ Cλ
(‖xλ‖ + ‖yλ‖ + 1

)
. (2.167)

Therefore xλ → x0 and yλ → y0 as λ → 0, thereby proving Corollary 2.116. �
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Remark 2.117 It turns out that Corollary 2.116 remains true if one merely assumes
that X or Y is reflexive (see Gossez [22]).

As a final (but, actually, immediate) application of Theorem 2.114, we cite a
minimax result which plays a fundamental role in game theory (see, for instance,
Aubin [1]).

Corollary 2.118 Let X and Y be reflexive Banach spaces, and let A and B be
two closed and convex subsets of X and Y , respectively. Let K0 be a closed saddle
function on X × Y satisfying the following condition:

(a) There exists some (x0, y0) ∈ A × B such that

lim
‖x‖+‖y‖→+∞
x∈A, y∈B

(
K0(x, y0) − K0(x0, y)

)= −∞. (2.168)

Then, the function K0 has at least one saddle point on A × B .

Proof Let K : X × Y → [−∞,+∞] be the closed saddle function defined
by (2.140). By Theorem 2.114, the operator ∂K : X × Y → X∗ × Y ∗ is maximal
monotone. Hence, for each λ > 0 (xλ, yλ) ∈ D(∂K) = A × B such that

λF1(xλ) − ∂xK(xλ, yλ) � 0, (2.169)

λF2(yλ) + ∂yK(xλ, yλ) � 0, (2.170)

where F1 : X → X∗ and F2 : Y → Y ∗ are dually mappings of X and Y , respectively.
Let (x0, y0) ∈ A × B be fixed as in condition (2.168). We multiply equa-

tion (2.169) by xλ − x0, equation (2.170) by yλ − y0, and use the definition of ∂K

to obtain

λ
(
F1(xλ), xλ − x0

) ≤ K(xλ, yλ) − K(x0, yλ),

λ
(
F2(yλ), yλ − y0

) ≤ K(xλ, yλ) + K(xλ, y0).

Therefore,

λ
(‖xλ‖2 + ‖yλ‖2)≤ λ

(‖xλ‖‖x0‖ + ‖yλ‖‖y0‖
)+ K(xλ, y0) − K(x0, yλ).

According to condition (a), this inequality shows that (xλ, yλ) must be bounded in
X × Y as λ tends to 0. Thus, without loss of generality, we may assume that

xλ → x̃ weakly in X,

yλ → ỹ weakly in Y,
(2.171)

as λ → 0. If we let λ → 0 in equations (2.169) and (2.170), we may infer that

lim
λ→0

∂K(xλ, yλ) = (0,0) strongly in X∗ × Y ∗. (2.172)
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Since ∂K is maximal monotone, from assumptions (2.171) and (2.172) it is imme-
diately clear that (x̃, ỹ) ∈ D(∂K) and

(0,0) ∈ ∂K(x̃, ỹ). (2.173)

Thus, we have shown that K has a saddle point (x̃, ỹ) on X×Y . But it is not difficult
to see that (x̃, ỹ) is a saddle point of K if and only if (x̃, ỹ) is a saddle point of K0
with respect to A × B , that is,

K0(x, ỹ) ≤ K0(x̃, ỹ) ≤ K0(x̃, y) for all x ∈ A and y ∈ B,

and this establishes Corollary 2.118. �

Let K∗ : X∗ ×Y ∗ →R be the concave–convex conjugate of K . By analogy with
the terminology used in the study of convex functions, K∗ is called the conjugate
of K . If K is closed, so is K∗ and, according to Theorem 2.114, if X and Y are
reflexive, then the subdifferential ∂K∗ of K∗ is a maximal monotone operator from
X∗ × Y ∗ into X × Y . It is not difficult to see that ∂K∗ is the inverse of ∂K , that is,

(x, y) ∈ ∂K∗(x∗, y∗) ⇐⇒ (x∗, y∗) ∈ ∂K(x, y). (2.174)

In particular, this means that the saddle points of K are just the elements of
∂K∗(0,0). Thus, K has a saddle point, if and only if K∗ has a subgradient at (0,0).
In particular, this implies that the set of all saddle points of the proper closed saddle
function K is a closed and convex subset of the product space X × Y . Furthermore,
if K∗ happens to be continuous at (0,0), then this set is weakly compact in X×Y . It
follows that the conditions ensuring the subdifferentiability of K∗ may be regarded
as mini-max theorems. This subject is discussed in some detail in the sequel.

2.3.3 Mini-max Theorems

Let X,Y be two separated linear topological spaces and let F : X × Y → R. An
important problem is to establish certain conditions on F,X and Y under which the
mini-max equality

max
x∈X

min
y∈Y

F (x, y) = min
y∈Y

max
x∈X

F(x, y) (2.175)

is true or at least a saddle value exists, that is,

sup
x∈X

inf
y∈Y

F (x, y) = inf
y∈Y

sup
x∈X

F(x, y). (2.176)

All the results of this type are termed mini-max theorems. In view of Proposi-
tion 2.105, the mini-max equality is equivalent to the existence of a saddle point
of F on X × Y .
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This section is concerned with the main mini-max theorems and some general-
izations of the famous mini-max theorem of von Neumann [76].

First, we prove a general result established by Terkelsen [72].

Theorem 2.119 Let A b e a compact set in a topological space, let B be an arbi-
trary set, and let F be a real-valued function defined on A × B such that F(·, y) is
an upper-semicontinuous function on A for every y ∈ B . Then, the following state-
ments are equivalent.

(a) For every α ∈R and y1, y2, . . . , yn ∈B such that α >maxx∈A min1≤i≤n F (x, yi),
there is y0 ∈ B such that α > maxx∈A F(x, y0).

(b) F satisfies the equality

max
x∈A

inf
y∈B

F(x, y) = inf
y∈B

max
x∈A

F(x, y). (2.177)

Proof First, we notice that because A is a compact set according to the Weierstrass
theorem for the upper-semicontinuous functions (see Theorem 2.8), we can take
“max” instead of “sup”.

We immediately obtain statement (a) from equality (2.177) by using the defini-
tion of a supremum. Let us prove that statement (a) implies (b). Let an arbitrary
α ∈ R be such that

α > max
x∈A

inf
y∈B

F(x, y).

We write Ay = {x ∈ A; F(x, y) ≥ α}, for every y ∈ B , and hence
⋂

y∈B Ay = ∅. By
hypothesis, Ay is closed; therefore, A being a compact set, there are y1, . . . , yn ∈ B

with
⋂n

i=1 Ayi
= ∅, which implies min1≤i≤n F (x, yi) < α, for each x ∈ X. Thus,

maxx∈A min1≤i≤n F (x, yi) < α and then, from statement (a) we obtain y0 ∈ B such
that α > maxx∈A F(x, y0), from which it results that α > infy∈B maxx∈A F(x, y).
Now, if α tends to maxx∈A infy∈B F(x, y), we have

max
x∈A

inf
y∈B

F(x, y) ≥ inf
y∈B

max
x∈A

F(x, y).

Moreover, it follows from (2.132) that equality (2.177) holds. �

Corollary 2.120 Under the same assumptions as in the theorem, if for every
y1, y2 ∈ B there is y3 ∈ B such that F(x, y3) ≤ F(x, y1) and F(x, y3) ≤ F(x, y2)

for every x ∈ A, then F satisfies equality (2.177).

Corollary 2.121 If (fn) is a decreasing sequence of real-valued upper-semicontin-
uous functions on a compact set A, then

lim
n→∞ max

x∈A
fn(x) = max

x∈A
lim

n→∞ fn(x). (2.178)

Proof To prove this, take B = N and define F(x,n) = fn(x), x ∈ A, n ∈ N. We have
satisfied a directed condition which, obviously, implies statement (a), hence equal-
ity (2.178). �
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Remark 2.122 The previous theorem is not really a mini-max theorem. If, moreover,
B is a compact set and y → F(x, y) is a lower-semicontinuous function on B

for every x ∈ A, then statement (a) is equivalent to the mini-max equality (2.175)
because the infimum is also attained.

Property (a) is a rather natural one because, from equality (2.175), inequal-
ity (2.178) is equivalent to the following assertion:

for every α ∈ R such that α > maxx∈A infy∈B F(x, y), there is y0 ∈ B such that
α ≥ maxx∈A F(x, y0).

Since the set A is compact and the function F(·, y) is upper-semicontinuous, it
is “possible” to consider the infimum only on the finite subsets of B .

The natural framework for presenting mini-max theorems is that of concave–
convex functions. Among the various methods used in the proof of mini-max theo-
rems, we notice the following: the first relies on separation properties of convex
sets and the second is based on the celebrated Knaster–Kuratowski–Mazurkiewicz
Theorem [38] (Theorem 2.129 below). However, these methods can be extended to
functions more general than concave–convex functions.

Definition 2.123 A function F : X × Y → R is said to be concave–convex-like if
the following conditions hold:

(i) For every x1, x2 ∈ X and t ∈ [0,1] there is an x3 ∈ X such that

tF (x1, y) + (1 − t)F (x2, y) ≤ F(x3, y) for all y ∈ Y, (2.179)

whenever the left-hand side makes sense.
(ii) For every y1, y2 ∈ Y and t ∈ [0,1], there is a y3 ∈ Y such that

F(x, y3) ≤ tF (x, y1) + (1 − t)F (x, y2) for all x ∈ X, (2.180)

whenever the right-hand side is well defined.

Definition 2.124 A function F : X × Y → R is said to be quasi-concave–convex
if the level sets {x ∈ X;F(x, ȳ) ≥ α} and {y ∈ Y ;F(x̄, y) ≤ α} are convex sets for
every ȳ ∈ Y , x̄ ∈ X and α ∈R.

It is clear from condition (i) that the following property results.

(i)′ For every x1, x2 ∈ X and t1, t2, . . . , tn ≥ 0 with
∑n

i=1 ti = 1, there is an x0 ∈ X

such that
n∑

i=1

tiF (xi, y) ≤ F(x0, y) for all y ∈ Y, (2.181)

whenever the left-hand side is well defined.

A similar statement for condition (ii) holds.
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Remark 2.125 The concepts of concave–convex-like and quasi-concave–convex are
independent of each other. However, a concave–convex function is at the same time
concave–convex-like and quasi-concave–convex.

In the following, we assume that A ⊂ X, B ⊂ Y are two nonempty convex sets
and that F is real-valued on A × B . Hence, for extended real-valued functions, the
set A × B plays the role of effective domain.

Theorem 2.126 Let X,Y be separated topological linear spaces, A ⊂ X, B ⊂ Y

compact convex sets and F a real-valued upper-semicontinuous concave–convex-
like function on A × B . Then F satisfies the mini-max equality on A × B .

Proof Let us prove that F has property (a) from Theorem 2.119.
Let α ∈ R and y1, y2, . . . , yn ∈ B be such that

α > max
x∈A

min
1≤i≤n

F (x, y). (2.182)

Now, we consider the following convex sets of Rn:

C1 = conv
{(

F(x, y1),F (x, y2), . . . ,F (x, yn)
); x ∈ A

}
,

C2 = {(u1, u2, . . . , un); ui ≥ α, i = 1,2, . . . , n
}
.

Obviously, C2 is a cone with vertex ᾱ = (α,α, . . . , α) ∈ R
n and C1 ∩ C2 = ∅. In-

deed, if u = (u1, u2, . . . , un) ∈ C1, there are xj ∈ A and αj ≥ 0, j = 1,2, . . . ,m,
with

∑m
j=1 aj = 1, such that ui =∑m

j=1 ajF (xj , yi) for every i = 1,2, . . . , n. Now,
from (i)′, there exists a point x0 ∈ A such that

F(x0, y) ≥
m∑

j=1

ajF (xj , y). (2.183)

Using (2.182), we find i0 for which α > F(x0, yi0). Therefore, it follows from
inequality (2.183) that α > ui0 , that is, u = (u1, u2, . . . , un)∈C2. According to
Corollary 1.41, for the disjoint convex subsets C1,C2 we find a nonzero element
c = (c1, c2, . . . , cn) ∈R

n such that

sup
u∈C1

n∑

i=1

ciui ≤ inf
u∈C2

n∑

i=1

ciui . (2.184)

However, the cone C2 contains all the points (α,α, . . . , α,α + n,α, . . . , α),
n ∈ N, and therefore ci ≥ 0; hence, the infimum is attained at the vertex. Tak-
ing c′

i = ci(
∑n

j=1 cj )
−1 and ui = F(x, yi), from inequality (2.184), we obtain

∑n
i=1 c′

iF (x, yi) ≤ α for all x ∈ A. Combining this with property (ii) from Defi-
nition 2.123, there is a point y0 ∈ B such that F(x, y0) ≤ α for every x ∈ A; hence,
α ≥ maxx∈A F(x, y0) and thus assertion (a) from Theorem 2.119 is really satisfied.
Therefore relation (2.177) is true. Now, using (2.177) and the lower-semicontinuity
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of F(x, ·) on the compact B for every x ∈ A, we obtain the mini-max equal-
ity (2.175). �

Corollary 2.127 If X,Y are reflexive Banach spaces, A ⊂ X, B ⊂ Y are bounded
closed and convex sets, F is an upper-lower-semicontinuous concave–convex func-
tion on A × B , then F has a saddle point on A × B .

Proof It is sufficient to recall that in a reflexive Banach space, every bounded closed
convex set in weakly compact (Theorem 1.94) and the lower-(upper-)semicontinuity
is equivalent to the weak lower-(upper-)semicontinuity for the class of convex (con-
cave) functions, by virtue of Proposition 2.10. We can, therefore, apply the theorem
where X,Y are endowed with their weak topologies. �

Remark 2.128 As is easily seen from the proof of Theorem 2.119, we omit the
compactness condition of the set B and the lower-semicontinuity condition of the
function F(x, ·), we obtain equality (2.177).

Now, we prove similar results for quasi-concave–convex functions. As noted
above, we use the following statement due to Knaster, Kuratowski and Mazur-
kiewicz [38].

Theorem 2.129 (Knaster–Kuratowski–Mazurkiewicz) Let U be an arbitrary set
in a finite-dimensional separated topological linear space E. To every u ∈ U ,
let F (u) ⊂ E be a compact set such that the convex hull of every finite subset
{u1, u2, . . . , un} ⊂ U is contained in the corresponding union

⋃
i=1 F (ui). Then,⋂

u∈U F (u) �= ∅.

The first main result for the quasi-concave–convex functions is the following.

Theorem 2.130 Let F be a real-valued upper-lower-semicontinuous quasi-
concave–convex function on A × B . If there are y0 ∈ B and α0 <

infy∈B supx∈A F(x, y) such that the level set {x ∈ A;F(x, y0) ≥ α0} be compact,
then

sup
x∈A

inf
y∈B

F(x, y) = inf
y∈B

sup
x∈A

F(x, y). (2.185)

Proof Suppose by contradiction that equality (2.185) is not true. From inequal-
ity (2.132), there is α > α0, such that

sup
x∈A

inf
y∈B

F(x, y) < α < inf
y∈B

sup
x∈A

F(x, y). (2.186)

Write Ay = {x ∈ A;F(x, y) ≥ α} and Bx = {y ∈ B;F(x, y) ≤ α}, which by hypo-
thesis are nonempty convex and closed sets. Using (2.186), it follows that

⋂

y∈B

Ay = ∅,
⋂

x∈A

Bx = ∅.
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Since Ay0 is compact, there are y1, . . . , yn ∈ B such that
⋂n

i=1 Ay1 = ∅. On the other
hand, as the convex sets finitely generated are compact, there are x1, . . . , xm ∈ A

such that
m⋂

i=1

Bxj
∩ conv{yi; i = 1,2, . . . , n} = ∅.

Let A′ = conv{x1, x2, . . . , xm} and B ′ = conv{y1, y2, . . . , yn}. Define the multi-
valued mapping F on A′ × B ′ by

F (u, v) = {(w, s) ∈ A′ × B ′; F(w,v) ≥ α or F(u, s) ≤ α
}
. (2.187)

One may easily show that all the conditions of Theorem 2.129 are fulfilled. Indeed,
F (u, v) is a compact set since F is upper-semicontinuous and A′ ×B ′, λi ≥ 0, with∑p

i=1 λi = 1 such that

p∑

i=1

λi(ui, vi)∈F (uj , vj ) for all j = 1,2, . . . , p;

it follows that

F

(
p∑

i=1

λiui, vj

)

< α and F

(

uj ,

p∑

i=1

λivi

)

> α, j = 1,2, . . . , p.

Since the sets
{

y ∈ B ′; F

(
p∑

i=1

λiui, y

)

< α

}

and

{

x ∈ A′; F

(

x,

p∑

i=1

λivi

)

> α

}

are convex, at the same time we obtain

F

(
p∑

i=1

λiui,

p∑

i=1

λivi

)

< α and F

(
p∑

i=1

λiui,

p∑

i=1

λivi

)

> α,

which is a contradiction. Hence,

p∑

i=1

λi(ui, vi) ∈
p⋃

i=1

F (ui, vi).

Thus, according to Theorem 2.129, there is (x0, y0) ∈ A′ × B ′ such that (x0, y0) ∈
F (x, y) for all (x, y) ∈ A′ × B ′, that is, F(x0, y0) ≥ α or F(x0, y0) ≤ α for all
x ∈ A′ and y ∈ B ′. On the other hand, it follows that there are i0 and j0 such that
x0 ∈Ayi0

and y0 ∈Bxj0
, which implies

α < F(xj0 , y0) ≤ α or α ≤ F(x0, yi0) < α.

This is a contradiction. Therefore, equality (2.185) holds. �
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Remark 2.131 It is worth noting that it is sufficient to assume that F(x, ·) is lower-
semicontinuous only on the intersection of B with any finite-dimensional space.
It should be emphasized that in equality (2.185) “sup” may be replaced by “max”
because F(·, y) is upper-semicontinuous and A may be replaced by the compact
set Ay0 .

According to Theorem 2.130, we obtain a result similar to Theorem 2.126, for
the class of quasi-concave–convex functions.

Theorem 2.132 Let A,B be two compact convex sets and let F be a real-valued
upper-semicontinuous quasi-concave–convex function on A × B . Then F satisfies
the mini-max equality on A × B .

Remark 2.133 By Remark 2.125 and Theorem 2.126 or Theorem 2.132, we find the
classical mini-max theorem for concave–convex functions. Likewise, we find again
Corollary 2.118 for the semicontinuous saddle functions.

Corollary 2.134 Let X,Y be reflexive Banach spaces, and let A ⊂ X, B ⊂ X be
closed convex sets. If F is a semicontinuous saddle function on A×B satisfying the
conditions:

(a) A and B are bounded, or
(b) There is (x0, y0) ∈ A × B such that

lim
‖x‖+‖y‖→∞
(x,y)∈A×B

{
F(x0, y) − F(x, y0)

}= ∞, (2.188)

then F verifies the mini-max equality on A × B .

Proof If F satisfies condition (a), Theorem 2.132 can be used for the work topolo-
gies on X and Y . Hence, it is sufficient to prove the corollary if F satisfies the
coercivity condition (b). It is clear, from condition (b), that there exists h > 0 such
that, for every (x, y) ∈ A × B with ‖x‖ + ‖y‖ ≥ h, we have

F(x0, y) − F(x, y0) > 0. (2.189)

We can assume that h > max{‖x0‖,‖y0‖}. From the first part of the corollary
applied to the function F with respect to nonempty bounded closed convex sets
A′ = {x ∈ A; ‖x‖ ≤ h} and B ′ = {y ∈ B; ‖y‖ ≤ h}, it follows that there is a saddle
point (x ′, y′) ∈ A′ × B ′, that is,

F(x, y′) ≤ F(x′, y′) ≤ F(x′, y), (2.190)

for every (x, y) ∈ A′ × B ′.
Particularly, since (x0, y0) ∈ A′ × B ′, we obtain

F(x0, y
′) ≤ F(x ′, y ′) ≤ F(x ′, y0)
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from which we see that (x′, y ′) does not satisfy inequality (2.189); therefore, ‖x′‖ <

h and ‖y ′‖ < h. Then, for every y ∈ B , we can choose a suitable λ ∈ ]0,1[ such that
λy + (1 −λ)y′ ∈ B ′. From the right-hand side of inequality (2.190), by virtue of the
convexity of F(x′, ·), we obtain

F(x ′, y ′) ≤ F
(
x ′, λy + (1 − λ)y ′)≤ λF(x′, y) + (1 − λ)F (x′, y ′),

which leads to

F(x′, y ′) ≤ F(x′, y),

for every y ∈ B . Similarly, from the left side of inequality (2.190) and, by virtue of
the concavity of F(·, y ′), we have

F(x, y′) ≤ F(x′, y′),

for every x ∈ A. The last two inequalities imply that (x′, y ′) is a saddle point of F

on A × B and the proof is complete (Proposition 2.105). �

Remark 2.135 Condition (a) or (b) in the previous corollary may be replaced by the
following conditions:

(a)′ B is bounded and there is y0 ∈ B such that

lim
‖x‖→∞
x∈A

F (x, y0) = −∞, (2.191)

or, by the symmetric condition

(b)′ A is bounded and there is x0 ∈ A such that

lim
‖y‖→∞
y∈B

F (x0, y) = +∞. (2.192)

Also, relations (2.191) and (2.192) together are sufficient.

All the results in this section can be applied to functions with values in R, defined
on a product of two separated topological linear spaces. It is known that, if F0 is a
real-valued function on A × B , there is an extended real-valued function F defined
on all space X×Y such that F |domF = F0 (see (2.140) from Sect. 2.3.2). Moreover,
we have

sup
x∈X

inf
y∈Y

F (x, y) = sup
x∈A

inf
y∈B

F0(x, y), (2.193)

inf
y∈Y

sup
x∈X

F(x, y) = inf
y∈B

sup
x∈A

F0(x, y). (2.194)

Hence, if F0 has a saddle value, then F has the same saddle value and reciprocally.
Also, (x, y) is a saddle point of F on X × Y if and only if (x, y) is a saddle point
of F0 on A × B (provided F0 is a proper function). On the other hand, giving an
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extended real-valued function F : X × Y → R, the role of A and B is played by
D1(F ) and D2(F ). In general, relations (2.193) and (2.194) are not true. However,
we can indicate a sufficiently large class of functions which satisfy these equalities.

Proposition 2.136 If F is a proper closed saddle function on X × Y , then rela-
tions (2.193) and (2.194) hold, where A × B = domF .

Proof By definition of A = D1(F ), we have

sup
x∈X

inf
y∈Y

F (x, y) = sup
x∈X

inf
y∈Y

cl2 F(x, y) = sup
x∈A

inf
y∈Y

cl2 F(x, y).

On the other hand, since F is closed, by definition of B = D2(F ) we have

inf
y∈Y

cl2 F(x, y) = inf
y∈Y

cl2 cl1 F(x, y) = inf
y∈Y

cl1 F(x, y) = inf
y∈B

cl1 F(x, y),

hence

sup
x∈X

inf
y∈Y

F (x, y) = sup
x∈A

inf
y∈B

cl1 F(x, y) ≥ sup
x∈A

inf
y∈B

F(x, y).

Also, the converse inequality holds

sup
x∈X

inf
y∈Y

F (x, y) = sup
x∈A

inf
y∈Y

cl2 F(x, y) = sup
x∈A

inf
y∈Y

F (x, y) ≤ sup
x∈A

inf
y∈B

F(x, y).

Similarly an obtains (2.194). �

2.4 Problems

2.1 Let f : I → R be a function on the real interval I ⊂ R. Prove that f is quasi-
convex if and only if it is either monotone or there exists x0 ∈ I such that f is
decreasing on (−∞, x0] ∩ I and increasing on [x0,∞) ∩ I .

Hint. We denote α = inf{f (x);x ∈ I }. Let us consider a sequence (xn)n∈N∗ ⊂ I

such that f (xn) → α. Let x̄ be a cluster element in R of the sequence (xn)n∈N∗ and
denote by a, b ∈ R the extremities of the interval I . The following three cases are
possible: (1) x̄ = a; (2) x̄ = b; (3) a < x̄ < b. In the first case, the function f is
increasing on I . Indeed, if u,v ∈ I , u < v and f (u) > f (v), taking f (v) < β <

f (u), we find xn̄ such that f (xn̄) < β , where xn̄ < u, since α < β . Therefore, the
interval {x ∈ I ;f (x) ≤ β} (see Sect. 2.1.1) contains the points xn̄ and v. Hence, it
also contains the element u, that is, f (u) ≤ β , which is a contradiction. Similarly,
we prove that f is decreasing if x̄ = b. Now, if a < x̄ < b, then f is decreasing on
[a, x̄] ∩ I and increasing on [x̄, b] ∩ I .
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2.2 Let ϕ be a lower-semicontinuous convex function on the Hilbert space H and
let {xn} be defined by the following algorithm:

xn+1 + ∂ϕ(xn+1) � xn, n ∈ N.

Prove that the sequence {xn} is weakly convergent to a minimum point xe ∈
(∂ϕ)−1(0) of ϕ.

Hint. This is the descent step algorithm. If we set

K =
{
w − lim

nk→∞xnk

}
,

we show first that K ⊂ (∂ϕ)−1(0) and then prove that the sequence {|xn − y|2}n is
decreasing for each y ∈ (∂ϕ)−1(0). If

ξ1 = w − lim
nk→∞xnk

and ξ2 = w − lim
n′

k→∞
xn′

k
,

this implies that

lim
n′

k→∞
|xn′

k
− ξ1|2 = lim

n′′
k→∞

|xn′′
k
− ξ1|2,

lim
n′′

k
→∞

|xn′′
k
− ξ2|2 = lim

n′
k
→∞

|xn′
k
− ξ2|2

and therefore ξ1 = ξ2, as claimed.

2.3 Let K be a closed convex subsets of Rm and let

K = {y ∈ (Lp(Ω)
)m; y(x) ∈ K, a.e. x ∈ Ω

}
,

where 1 ≤ p < ∞ and Ω is a measurable sub set of R
n. Find the normal cone

NK (y) ⊂ (Lq(Ω))m to K at y, 1
p

+ 1
q

= 1.

Hint. Apply Proposition 2.53, where g(x, y) = 0 if y ∈ K , g(x, y) = +∞ if
y ∈K .

2.4 Find the normal cone NK for

K = {y ∈ Lp(Ω); a ≤ y(x) ≤ b, a.e. x ∈ Ω
}
,

K = {y ∈ (Lp(Ω)
)m; ∥∥y(x)

∥
∥

m
≤ ρ, a.e. x ∈ Ω

}
,

where ‖ · ‖m is the Euclidean norm in R
m.

2.5 Find the normal cone NK to the set K = {y ∈ L2(Ω); a ≤ y(x) ≤ b, a.e.
x ∈ Ω,

∫
Ω

y(x)dx = �}, where am(Ω) ≤ � ≤ bm(Ω) (m is the Lebesgue measure).
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Hint. We represent K = K1 ∩K2 where K1 = {y ∈ L2(Ω); a ≤ y(x) ≤ b, a.e.
x ∈ Ω}, K2 = {y ∈ L2(Ω); ∫

Ω
y(x)dx = �} and show that

NK (y) = NK1(y) + NK2(y), ∀y ∈ K .

Since NK1(y) + NK2 ⊂ NK (y), it suffices to show that, for every f ∈ L2(Ω), the
equation y + NK1(y) + NK2(y) � f has a solution y ∈ K . Since NK2(y) = R, the
above equation reduces to y = PK1(f − λ), λ ∈ R, where PK1 is projection on K1.

2.6 Let g : R →R be a lower-continuous convex function such that lim|r|→∞ g(r)
|r| =

+∞ and let ϕ : H−1(Ω) →R
∗

be defined by

ϕ(y) =
{∫

Ω
g(y(x))dx, if g(y) ∈ L1(Ω),

+∞, otherwise.

Show that ϕ is lower-semicontinuous and that

∂ϕ(y) = {−Δw; w ∈ H 1
0 (Ω), y ∈ H−1(Ω) ∩ L1(Ω),

w(x) ∈ ∂g
(
y(x)

)
a.e. x ∈ Ω

}
. (2.195)

Hint. Let F(y) = {w ∈ H 1
0 (Ω); w(x) ∈ ∂g(y(x)) a.e. x ∈ Ω}. Clearly, F(y) ⊂

∂ϕ(y) for each y ∈ D(F). It suffices to show that F is maximal monotone from
(H 1

0 (Ω))′ = H−1(Ω) to itself. Equivalently, for each f ∈ H−1(Ω), the equation
−Δw + (∂g)−1(w) � f has a solution w ∈ H 1

0 (Ω). One takes an approximating
sequence {fn} ⊂ L2(Ω), fn → f in L2(Ω), and consider the corresponding solu-
tions wn to the equation −Δwn + (∂g)−1(wn) � fn in Ω , wn ∈ H 1

0 (Ω) ∩ H 2(Ω).
Taking into account that g∗(wn) + g((∂g)−1wn) = wn(∂g)−1(wn), we infer by the
Dunford–Pettis theorem that {yn ∈ (∂g)−1(wn)} is weakly compact in L1(Ω) and
therefore we may pass to the limit with wn to prove the existence of w ∈ H 1

0 (Ω)

with y ∈ (∂g)−1w ∈ L1(Ω).

2.7 Let j : R → R be a lower-semicontinuous convex function such that

ω2|r|p + cz ≤ j (r) ≤ ω1|r|p + c1, ∀r ∈R,

where ω1,ω2 > 0 and p > 1. We set β = ∂j . Consider the function ϕ : W 1,p

0 (Ω) →
R

∗
defined by

ϕ(y) =
∫

Ω

j (∇y)dx.

Show that ϕ is convex, lower-semicontinuous and its subdifferential ∂ϕ : W 1,p

0 (Ω)

→ W−1,p′
(Ω) is given by

∂ϕ(y) = {w ∈ W−1,p′
(Ω); w = −divη, η(x) ∈ ∂j

(∇y(x)
)
, a.e. x ∈ Ω

}
.

(2.196)
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Show that ϕ is lower-semicontinuous on L2(Ω), too. Does this result remain true if
p = 1?

Hint. It suffices to show that the map defined by the second right-hand
side of equation (2.196) is maximal monotone from W

1,p

0 (Ω) to (W
1,p

0 (Ω))′ =
W−1,p′

(Ω), 1
p

+ 1
p′ = 1. If β is single valued, this reduces to the existence of a

solution y for the nonlinear elliptic boundary-value problem λy − div ∂j (∇y) = f

in Ω ; y = 0 on ∂Ω , where λ > 0 and f ∈ Lp′
(Ω). (See [4], p. 81.)

If p = 1, then ϕ is no longer lower-semicontinuous on L2(Ω) if takes D(ϕ) =
W

1,1
0 (Ω), but remains so if D(ϕ) is taken to be the space of functions with bounded

variation which are zero on ∂Ω .

2.8 Let ϕ be a continuous and convex function on Hilbert space H with the norm
| · |, ϕ(0) = 0 and let ϕt be its regularization (see (2.58)), that is,

ϕt(x) = inf

{ |x − y|2
2t

+ ϕ(y); y ∈ H

}

= S(t)ϕ, t ≥ 0.

Show that S(t + s) = S(t)S(s)ϕ, ∀t, s > 0, and

d+

dt
ϕ(t, x) + 1

2

∣
∣∇xϕ(t, x)

∣
∣2 = 0, ∀t > 0, x ∈ H.

Remark 2.137 This means that t → S(t)ϕ is a continuous semigroup on the
space of all continuous convex functions on H with infinitesimal generator ϕ →
− 1

2 |∇xϕ(x)|2.

2.9 Let H be a Hilbert space and let F be a convex and continuously differentiable
function on H such that

lim|x|→∞
F(x)

|x| = +∞, ∇F is locally Lipschitz,

(
F ′(x) − F ′(y), x − y

)≥ ωr |x − y|2, ∀x, y, |x|, |y| ≤ r.

We set
(
S(t)ϕ

)
(x) = (ϕ∗ + tF )∗(t), t ≥ 0, x ∈ H.

Show that:

(1) limt→0 S(t)ϕ(x) = ϕ(x).
(2) S(t + s)ϕ = S(t)S(s)ϕ, ∀s, t > 0.
(3) d+

dt
S(t)ϕ + F(∇x(S(t)ϕ)) = 0, ∀t > 0, x ∈ H .

Hint. Show first that (S(t)ϕ)(x) = ϕ(yt (x))t + F ∗(∇F(∂ϕ(yt (x))), where
yt (x) = (I + t∇F(∂ϕ))−1(x) and ∇x(S(t)ϕ)(x) = (∇F)−1(t−1(x − yt (x))). (For
details, see Barbu and Da Prato [5], p. 25.)
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2.10 The unilateral (free boundary problem)

−y′′(x) + y(x) = f (x) in
[
x ∈ [0, T ];y(x) > ρ

]
,

−y′′(x) + y(x) ≤ f (x) in
[
x ∈ [0,1];y(x) = ρ

]
,

y(x) ≥ ϕ, ∀x ∈ [0,1], y(0) = y(1) = 0,

describes the equilibrium state of an elastic string fixed at x = 0,1 and pushed
against an obstacle y = ρ < 0 by a distributed force f (x). Represent it as a vari-
ational inequality and solve it for f (x) ≡ −1.

Hint. This is a problem of the form (2.95).

2.5 Bibliographical Notes

2.1. Most of the material on the general theory of convex functions presented in this
subsection can be found in the mimeographed lecture notes of Moreau [46],
the survey of Rockafellar [57] and the book [21] of Ekeland and Temam. In
finite-dimensional spaces, excellent surveys on the subject are available in the
Rockafellar book [56], the work of Ioffe and Tihomirov [33] and the books of
Stoer and Witzgall [71] and Vainberg [74]. In infinite-dimensional spaces, the
theory of conjugate functions has originally been developed by Bronsted [15]
and, subsequently, studied by Bronsted and Rockafellar [16], Moreau [45, 46].
Some special types of convex function are studied by Ponstein [50] (see also
the monograph of Avriel, Diewert, Schaible and Zang [2]). The first study on
convex functions was published in 1945 by Popoviciu [51].

2.2. Subdifferential mappings were originally studied in Hilbert spaces by Mo-
reau [45]. Theorem 2.43 was first proved by Moreau and later extended to a
general Banach space by Rockafellar [55, 59]. Theorem 2.46 is also due to
Rockafellar [55] and Theorem 2.58 is a slight extension of some results of
Moreau [45] and Brezis [12]. As already noticed, Theorem 2.62 is a special
case of a general perturbation theorem due to Rockafellar [60]. The idea of
the proof given here comes from the work [14] by Brezis, Crandall and Pazy.
Theorem 2.65 is due to Brezis [12, 13]. The theory of variational inequalities
has been the subject of much development in the last fifteen years. For detailed
treatments and applications, we refer the reader to the surveys of Stampacchia
[70], Mosco [47], and to the books of Duvaut and Lions [19]. The nonlinear
complementary problem in infinite dimension has been investigated by Kara-
mardian [35], Habelter and Price [24], Eaves [20], Saigal [67], among others.
Theorem 2.76 may be compared most closely with some results given by Kara-
mardian [36], and Bazaraa et al. [6–9].

The concept of ε-subdifferential of convex function was introduced by
Brønsted and Rockafellar [16]. The properties concerning the maximality with
respect to the ε-monotonicity (Definition 2.86) considered for the first time
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by Vesely [75] (see also Jofré, Luc and Théra [34]) are established by Pre-
cupanu and Apetrii in [52], where some connections with the ε-enlargement
of an operator defined by Revalski and Théra [54] and the special case of ε-
subdifferential are investigated. A detailed treatment of calculus rules of the ε-
subdifferential of a convex function is presented by Hirriart-Urruty and Phelps
in [28].

The first notion of quasi-subdifferential for a quasi-convex function has been
defined independently by Greenberg and Pierskalla in [23] and Zabotin, Koblev
and Khabibulin in [77]. Different types of ε-quasi-subdifferential may be found
in the monographs of Singer [68], Hirriart-Urruty and Lemarechal [27] and the
papers of Ioffe [31], Martinez Legaz and Sach [43], Penot [49]. The concept of
ε-quasi-subdifferential given by Definition 2.124 was introduced by Precupanu
and Stamate in [53], where the relationship existing between this new type of
quasi-subdifferential and other quasi-subdifferentials known in the literature is
presented.

2.3. The results presented in Sect. 2.3.2 are essentially due to Rockafellar [58, 62]
(see also [56]). The first mini-max theorem was formulated for bilinear func-
tionals on finite-dimensional spaces by von Neumann [76]. Theorems 2.119
and 2.126 are essentially due to Terkelsen [72]. Mini-max Theorems 2.130
and 2.132 extend some classical results due to Ky Fan [40, 41], Sion [69],
Kneser [39], Nikaido [48].
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Chapter 3
Convex Programming

This chapter is concerned with basic principles of convex programming in Banach
spaces, that is, with the minimization of lower-semicontinuous convex functions on
closed convex sets.

3.1 Optimality Conditions

As seen earlier in Sect. 2.2.1 for a proper convex function f on a Banach space
X, the minimum points of f are just the solutions to the equation 0 ∈ ∂f (x). This
elementary result has some specific features in the case of convex constraint mini-
mization.

3.1.1 The Case of a Finite Number of Constraints

Let X be a real linear space and let f : X → R be a given function. Consider the
minimizing problem for the function f on a subset AX ⊂ X, that is, the problem

(P1) min
{
f (x); x ∈ AX

}
.

The set AX constitutes the constraints of Problem P1. We say that an element
x̄ ∈ X is feasible if x̄ ∈ AX ∩ Dom(f ). The mathematical programming problem
P1 is said to be consistent if AX ∩ Dom(f ) �= ∅, that is, it has feasible elements.
A feasible element x0 is called an optimal solution of P1 if

f (x0) = inf
{
f (x); x ∈ AX

}
.

In the theory of mathematical programming, a high degree of variability arises
for the set AX of constraints and the cost function f . Thus, if AX and f are convex,
then Problem P1 is a convex programming problem.

V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces,
Springer Monographs in Mathematics,
DOI 10.1007/978-94-007-2247-7_3, © Springer Science+Business Media B.V. 2012
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The subset AX is often defined by the solutions of a finite number of equations
and inequalities as in

AX = {
x ∈ X; gi(x) ≤ 0, ∀i = 1, . . . , n; rj (x) = 0, ∀j = 1, . . . ,m

}
, (3.1)

where gi and rj are extended real-valued functions on X. In particular, if gi are
all identically zero, the latter reduces to a classical optimization problem with side
conditions which can be solved by using the Lagrangian function

L(x, ν) = f (x) +
m∑

j=1

νj rj (x), x ∈ Dom(f ), ν = (ν1, ν2, . . . , νm) ∈R
m.

If certain differentiability hypotheses are present, then from classical analysis it is
well known that if x0 ∈ int Dom(f ) is an optimal solution for the above problem,
then there exists an element ν0 ∈ R

m such that (x0, ν
0) is a critical point for L on

Dom(f ) × R
m without side conditions. In other words, we can obtain necessary

conditions for optimality by directly applying the Fermat theorem to the Lagrange
function L. If x0 ∈ Fr Dom(f ) or if the differentiability conditions are absent (which
happens in many optimization problems), a more sophisticated treatment based on
convexity theory is needed. In deriving necessary and sufficient conditions such that
a given element be optimal in Problem P1, the convexity, which still allows a wide
class of applications, avoids differentiability conditions on f and g. The first result,
one of algebraic character, is concerned with the case in which the functions rj are
affine (a function is said to be affine if it is a sum of a linear functional and a constant
function) and the functions gi are convex. In this case, it is clear that the constraint
set AX is convex.

Theorem 3.1 Let f,g1, g2, . . . , gn be proper convex functions and let r1, r2, . . . , rm
be affine functions. If x0 is an optimal solution of the consistent problem P1, where
AX is defined by (3.1), then there exist n + m + 1 real numbers λ0

0, λ
0
1, . . . , λ

0
n,

ν0
1 , . . . , ν0

m, which are not all zero and have the properties

λ0
0f (x0) ≤ λ0

0f (x) +
n∑

i=1

λ0
i gi(x) +

m∑

j=1

ν0
j rj (x), ∀x ∈ X0, (3.2)

λ0
0 ≥ 0, λ0

i ≥ 0, λ0
i gi(x0) = 0, ∀i = 1,2, . . . , n, (3.3)

where

x0 = Dom(f ) ∩
n⋂

i=1

Dom(gi).

Proof Consider the subset

B = {
f (x) − f (x0) + α0, g1(x) + α1, g2(x) + α2, . . . , gn(x) + αn,

r1(x), r2(x), . . . , rm(x); x ∈ X0, αi > 0, i = 0,1, . . . , n
}
. (3.4)
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It is easily seen that B is a nonvoid convex set of R1+n+m which does not contain
the origin. According to Corollary 1.41, there exists a homogeneous hyperplane, that
is, there exist 1 + n + m real numbers λ0

0, λ
0
1, . . . , λ

0
n, ν

0
1 , ν0

2 , . . . , ν0
m, which are not

all zero, such that

λ0
0

(
f (x) − f (x0) + α0

) +
n∑

i=1

λ0
i

(
gi(x) + αi

) +
m∑

j=1

ν0
j rj (x) ≥ 0, (3.5)

for all x ∈ X0, αi > 0, i = 0,1, . . . , n. Taking x = x0, αk ↘ 0 for k �= i and αi ↗ ∞
it follows that λ0

i ≥ 0 for every i = 0,1, . . . , n. Thus, relation (3.5) becomes

λ0
0

(
f (x) − f (x0)

) +
n∑

i=1

λ0
i gi(x) +

m∑

j=1

ν0
j rj (x) ≥ 0, ∀x ∈ X0,

and (3.2) is proved.
Now, it is clear that λ0

i gi(x0) ≥ 0, ∀i = 1,2, . . . , n, since x0 ∈ AX . If x = x0,
from the above inequality we also obtain

∑n
i=1 λ0

i gi(x0) ≥ 0, that is, λ0
i gi(x0) = 0,

∀i = 1,2, . . . , n, which completes the proof. �

The numbers λ0
i , ν

0
j with the properties mentioned in the theorem are called the

Lagrange multipliers of Problem P1. Since relations (3.2) and (3.3) are homoge-
neous with respect to coefficients, we can only consider λ0

0 = 0 or 1.
Thus, it is natural to call the function

L(x,λ, ν) = εf (x) +
n∑

i=1

λigi(x) +
m∑

j=1

νj rj (x), x ∈ X0,

λ = (λi) ∈ R
n+, ν = (νj ) ∈R

m, (3.6)

where ε = 0 or 1, the Lagrange function attached to Problem P1.

Remark 3.2 The necessary conditions (3.2) and (3.3) with x0 ∈ AX are equivalent to
the fact that the point (x0, λ

0
1, . . . , λ

0
n, ν

0
1 , . . . , ν0

m) is a saddle point for the Lagrange
function (3.6) on X0 × R

n+ × R
m, either for ε = 0, or for ε = 1, with respect to

minimization on X0 and maximization on R
n+ ×R

m, that is,

εf (x0)+
n∑

i=1

λigi(x0)+
m∑

j=1

νj rj (x0) ≤ εf (x)+
n∑

i=1

λ0
i gi(x)+

m∑

j=1

ν0
j rj (x), (3.7)

for every (x,λ, ν) ∈ X0 ×R
n+ ×R

m.

Relations (3.2) and (3.3) with λ0
0 = ε for x0 ∈ AX clearly imply relation (3.7)

because we have gi(x0) ≤ 0 and rj (x0) = 0. Conversely, for λi = 0, νj = 0, rela-
tion (3.7) implies inequality (3.2).
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From the same relation (3.7), for λi ↗ ∞ and νj → ±∞, it follows that
gi(x0) ≤ 0, rj (x0) = 0, that is, x0 ∈ AX . On the other hand, for x = x0, λi = 0,
νj = 0, relation (3.7) becomes

∑n
i=1 λ0

i gi(x0) ≥ 0, and so, λ0
i gi(x0) = 0 for all

i = 1,2, . . . , n.

Remark 3.3 The necessary optimality conditions (3.2) and (3.3) with λ0
0 �= 0 (that

is, (3.7) with ε = 1) and x0 ∈ AX are also sufficient for x0 to be an optimal solution
to Problem P1. If λ0

0 = 0 (ε = 0) the optimality conditions concern only the con-
straints functions, without giving any piece of information for the function which is
minimized.

It is natural to give certain additional conditions called constraint qualifications
which ensure that λ0

0 �= 0.
The following Slater’s constraint qualification is an instance of a constraint qua-

lification that is easily verifiable in many particular applications.

(S) There exists a point x̄ ∈ AX such that gi(x̄) < 0, ∀i = 1,2, . . . , n.

For the equality constraints we consider the interiority conditions

(O) 0 ∈ int{(r1(x), r2(x), . . . , rm(x)); x ∈ X0}.

Theorem 3.4 Let f,g1, . . . , gn be proper convex functions and let r1, r2, . . . , rm be
affine functions such that (S) and (O) are fulfilled. Then a point x0 ∈ AX is an
optimal solution for P1 if and only if there exist n+m real numbers λ0

1, λ
0
2, . . . , λ

0
n,

ν0
1 , ν0

2 , . . . , ν0
m, such that

f (x0) ≤ f (x) +
r∑

i=1

λ0
i gi(x) +

m∑

j=1

ν0
j rj (x), ∀x ∈ X0, (3.8)

λ0
i ≥ 0, λ0

i gi(x0) = 0, ∀i = 1,2, . . . , n. (3.9)

Proof Let x0 be an optimal solution of P1. According to Theorem 3.1, there exist
λ0

0, λ
0
1, . . . , λ

0
n, ν

0
1 , ν0

2 , . . . , ν0
m not all zero such that (3.2) and (3.3) hold. If we sup-

pose λ0
0 = 0, taking x = x̄ ∈ AX from (3.2) we obtain

∑n
i=1 λ0

i gi(x̄) ≥ 0. Since
λ0

i ≥ 0 and gi(x̄) < 0 for each i, we must have λ0
i = 0 for all i = 1,2, . . . , n.

Hence (3.2) becomes

m∑

i=1

ν0
j rj (x) ≥ 0 for all x ∈ X0,

where ν0
j are not all zero, contradicting the interiority condition (O). Hence λ0

0 > 0,

that is, we can eventually take λ0
0 = 1. Sufficiency follows from (3.8) since, for

x ∈ AX , we have λ0
i g(x) ≤ 0 and rj (x) = 0. Moreover, f (x0) is necessarily finite. �

By virtue of Remark 3.2, we also have the following theorem.
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Theorem 3.4′ Under the hypotheses of Theorem 3.4, an element x0 ∈ X is an opti-
mal solution if and only if there exist λ0=(λ0

1, . . . , λ
0
n) ∈R

n, ν0=(ν0
1 , ν0

2 , . . . , ν0
m) ∈

R
m such that (x0, λ

0, ν0) is a saddle point for the Lagrange function on X0 × (Rn+ ×
R

m), that is,

f (x0) +
n∑

i=1

λigi(x0) +
m∑

j=1

νj rj (x0) ≤ f (x) +
n∑

i=1

λ0
i gi(x) +

m∑

j=1

ν0
j rj (x), (3.10)

for all (x,λ, ν) ∈ X0 ×R
n+ ×R

m.

Remark 3.5 The constraint qualifications (S) and (O) ensures that the constraints
are consistent on AX and none of the equality constraints is redundant. Moreover,
the trace on X0 of the affine set from the right-hand side of (O) has dimension m.

Remark 3.6 The sufficiency is also true without the regularity. For a separated lo-
cally convex space, Theorem 3.4 can be improved to obtain the well known Kuhn–
Tucker theorem, a classical result in programming theory.

Theorem 3.7 (Kuhn–Tucker) Under the hypotheses of Theorem 3.4, if we further
assume that the function f is lower-semicontinuous and gi, rj are continuous real
functions, then the optimality condition (3.8) for x0 ∈ AX is equivalent to the condi-
tion

0 ∈ ∂f (x0) + λ0
1∂g1(x0) + · · · + λ0

n∂gn(x0)

+ ν0∇r1(x0) + ν0
2∇r2(x0) + · · · + ν0

m∇rm(x0). (3.11)

Proof Since conditions (3.9) are verified, condition (3.8) says that x0 ∈ AX is a
minimum point of the function

x → f (x) +
n∑

i=1

λ0
i gi(x) +

m∑

j=1

ν0
j rj (x) on X, that is,

0 ∈ ∂

(

f +
n∑

i=1

λ0
i gi +

m∑

j=1

ν0
j rj

)

(x0),

since inequality (3.8) is trivial on X \ X0 and X0 = Dom(f ).
Using the additive of the subdifferential (see Corollary 2.63 and Remark 2.61, or

Theorem 3.57), we obtain the equivalence to relation (3.11), as claimed. �

Remark 3.8 Since rj is affine, there exist a continuous linear functional x∗
j ∈ X∗

and a real number αj ∈R such that rj = x∗
j +αj . Therefore, we have ∇rj = x∗

j and
(3.11) becomes

0 ∈ ∂f (x0) + λ0
1∂g1(x0) + λ0

2∂g2(x0) + · · · + λ0
n∂gn(x0)

+ x∗
1 (x0) + x∗

2 (x0) + · · · + x∗
m(x0). (3.12)
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Now, if we consider only the case of the constraint given by inequalities, that is,

Ax = {
x ∈ X; gi(x) ≤ 0, ∀i = 1,2, . . . , n

}
, (3.13)

the Slater condition is as follows.

(S) There exists a point x̄ ∈ Dom(f ) such that gi(x̄) < 0, ∀i = 1,2, . . . , n.

From Theorem 3.7, we obtain the following result.

Theorem 3.9 Let f be a proper convex lower-semicontinuous function and let
g1, g2, . . . , gn be real convex continuous functions satisfying the Slater condi-
tion (S). Then a point x0 ∈ AX (given by (3.13)) is an optimal solution for P1
if and only if there exists λ0 = (λ0

1, λ
0
2, . . . , λ

0
n) such that

0 ∈ ∂f (x0) + λ0
1∂g1(x0) + λ0

2∂g2(x0) + · · · + λ0
n∂gn(x0), (3.14)

λ0
i ≥ 0, λ0

i gi(x0) = 0, ∀i = 1,2, . . . , n. (3.15)

Corollary 3.10 Let f,g1, g2, . . . , gn be real convex and differentiable functions on
X which satisfy (S). Then a feasible element x0 is an optimal solution of Problem
P1 with AX given by (3.13) if and only if there exist real numbers λ0

1, λ
0
2, . . . , λ

0
n

such that

∇f (x0) + λ0
1∇g1(x0) + · · · + λ0

n∇gn(x0) = 0, (3.16)

λ0
1 ≥ 0, λ0

i gi(x0) = 0, ∀i = 1,2, . . . , n. (3.17)

Remark 3.11 If X is a finite-dimensional space, dimX = k, the method of Lagrange
multiplier employs a simpler technique for finding the optimal solutions. First, we
find the solutions (λ, x) ∈ R

n × X of the system

f (x) +
n∑

i=1

λi∇gi(x) = 0,

λigi(x) = 0, i = 1,2, . . . , n.

This system is formed by k + n equations and k + n real unknowns. If λi ≥ 0 for
all i = 1,2, . . . , n, then the feasible element x corresponding to λ is an optimal
solution. Hence, in the finite-dimensional case, for differentiable convex functions,
the Kuhn–Tucker conditions (3.16) and (3.17) give a practical procedure to solve
completely the convex programming problem.

3.1.2 Operatorial Convex Constraints

The problem studied in the preceding section, in which the constraints are given by a
finite number of inequations and equations may be extended in various ways. Thus,
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the function gi may be included in an operator, the natural order of real numbers
being replaced by an order generated by a convex cone. Namely, we consider the
programming problem

(P2) min
{
f (x); x ∈ A, G(x) ∈ −AY

}
,

where X,Y are two separated locally convex spaces, A is a convex subset of X,
AY is a closed convex cone of Y , f : X → R is a proper convex function with
Dom(f ) ⊃ A and G : D(G) → Y with D(G) ⊂ X is a convex operator, that is,
D(G) is convex and

G(λ1x1 + λ2x2) ≤ λ1G(x1) + λ2G(x2), ∀x1, x2 ∈ D(G),

λ1 ≥ 0, λ2 ≥ 0, λ1 + λ2 = 1.

The ordering relation in Y is generated by the cone AY , that is,

y1 ≥ y2 if and only if y1 − y2 ∈ AY .

Feasible elements of P2 are the elements of A ∩ G−1(−AY ). Thus, Problem P2 is
considered consistent if A ∩ G−1(−AY ) �= ∅. It is clear that, in the special cases

A = Dom(f ) ∩ {
x ∈ X; rj (x) = 0, ∀j = 1,2, . . . ,m

}
,

Y = R
m, AY = R

m+, G(x) = (
g1(x), g2(x), . . . , gn(x)

)
,

x ∈
n⋂

i=1

Dom(gi),

(3.18)

or

A = Dom(f ), Y = R
n+m, AY = R

n+ × {0Rm},
G(x) = (

g1(x), g2(x), . . . , gn(x), r1(x), r2(x), . . . , rm(x)
)
,

x ∈
n⋂

i=1

Dom(gi).

(3.19)

Problem P2 reduces to the preceding problem P1 with AX given in (3.1).
In general, the constraints given by equations are included in the set A, and those

given by inequations are expressed in terms of ordering generated by the cone AY .
Now, it is natural to consider as the Lagrange (Fritz John) multiplier for an opti-

mal solution x0 of Problem P2 a pair of elements (η0, y
∗
n) ∈R×Y ∗, not both zero,

which satisfies the properties

η0f (x0) ≤ η0f (x) + (
y∗

0 ,G(x)
)
, ∀x ∈ A ∩ D(G), (3.20)

η0 ≥ 0, (y∗
0 , y) ≥ 0, ∀y ∈ AY

(
i.e., y∗

0 ∈ −A0
Y

)
,

(
y∗

0 ,G(x0)
) = 0. (3.21)

In the following, we are going to establish some results analogous to those given
in the preceding section concerning the existence of Lagrange multipliers. With
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that end in view, let us first remark that the role of the set B used in the proof of
Theorem 3.1 is taken, here, by the set

B = {(
f (x) − f (x0) + α,G(x) + y

) ∈ R× Y ; x ∈ A ∩ D(G), y ∈ AY , α ≥ 0
}
,

(3.22)
where x0 ∈ A ∩ G−1(−AY ) ∩ D(G) ∩ Dom(f ).

It is easy to see that B is convex and contains the element (0,G(x0)) if x0 is the
optimal solution for P2.

Lemma 3.12 An element (η0, y
∗
0 ) ∈R× Y ∗ has properties (3.20) and (3.21) if and

only if (η0, y
∗
0 ) ∈ −(coneB)0.

Proof According to the definition of the polar of a cone, it follows that (η0, y
∗
0 ) ∈

−(coneB)0 if and only if

η0
(
f (x) − f (x0) + α

) + (
y∗

0 ,G(x) + y
) ≥ 0,

for all x ∈ A ∩ D(G), y ∈ AY , α ≥ 0.

Since nα ≥ 0 and ny ∈ AY for any n ∈ N if α ≥ 0 and y ∈ AY , the preceding
inequality is equivalent to the two properties

η0
(
f (x) − f (x0)

) + (
y∗,G(x)

) ≥ 0, for all x ∈ A ∩ D(G)

and

η0 ≥ 0 and (y∗
0 , y) ≥ 0, for all y ∈ AY , i.e., y∗

0 ∈ −A0
Y .

We also have (y∗
0 ,G(x0)) = 0. �

With the help of Lemma 3.12, one easily obtains the following theorem.

Theorem 3.13 For the optimal solution x0 of Problem P2 there exists a Lagrange
multiplier (η0, y

∗
0 ) ∈R× Y ∗ if and only if

coneB �=R× Y. (3.23)

Proof By virtue of Lemma 3.12 we have the result that there exist Lagrange multi-
pliers if and only if (coneB)0 �= {(0,0)}. According to the bipolar theorem (Theo-
rem 2.26, Chap. 2), this reduces to condition (3.23). �

In the optimization theory, an important role is played by proper Lagrange mul-
tipliers, that is those for which η0 �= 0. In this case, we can take η0 = 1 and then
the corresponding element y∗

0 is considered as a (proper) Lagrange multiplier. The
characteristic properties (3.20) and (3.21) become

f (x0) ≤ f (x) + (
y∗

0 ,G(x)
)
, ∀x ∈ A ∩ D(G), (3.24)
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(y∗
0 , y) ≥ 0, ∀y ∈ AY

(
i.e., y∗

0 ∈ −A0
Y

)
,

(
y∗

0 ,G(x0)
) = 0. (3.25)

The Lagrange function is defined by

L(x, y∗) = f (x) + (
y∗,G(x)

)
, ∀x ∈ A ∩ D(G), y∗ ∈ −A0

Y . (3.26)

For the existence of this type of Lagrange multiplier it is necessary to impose
some regularity conditions. Among them, let us consider the simple interiority con-
ditions

0 ∈ int
(
G(A) + AY

)
. (3.27)

Lemma 3.14 If (3.27) holds, then every Lagrange multiplier is proper.

Proof Suppose by contradiction that (0, y∗
0 ) is a Lagrange multiplier. Then, from

the characteristic property (3.20), we obtain
(
y∗

0 ,G(x) + y
) ≥ 0 for all x ∈ A ∩ D(G) and y ∈ AY .

By virtue of hypothesis (3.27), it follows that y∗
0 is nonnegative on a neighbor-

hood of origin (an absorbent set). This implies y∗
0 = 0, which is not possible since

η0, y
∗
0 are not both zero.

Next, we observe that there exists a Lagrange multiplier, that is, condition (3.23)
is fulfilled, if one of these two simple conditions holds:

intAY �= ∅, (3.28)

or

coneB is closed in R× Y. (3.29)

Indeed, if intAY �= ∅, it follows that ]−∞,0[ × (− intAY ) ∩ coneB = ∅. Assume
that (α0, y0) ∈ −coneB and y0 ∈ intAY . Then, according to the definition of the
set B , there exist the nets λi > 0, yi ∈ AY , xi ∈ A ∩ D(G) and αi ≥ 0 such that

lim
i

λi

(
f (xi) − f (x0) + αi

) = −α0,

lim
i

λi

(
yi + G(xi)

) = −y0.

Since y0 ∈ intAY , there exists i0 such that λi(yi + G(xi)) ∈ −AY for all i > i0
and so, G(xi) ∈ −AY , ∀i > i0. On the other hand, xi ∈ A∩D(Gi) and G(xi) ∈ −AY

involve f (xi) ≥ f (x0) and hence α0 ≤ 0. Therefore, (α0, y0) /∈ −coneB if α0 > 0
and y0 ∈ intAY (that is, coneB �= R × Y). To prove that condition (3.23) is fulfilled
if condition (3.29) is verified, we observe that (]0,∞[ × AY ) ∩ (−coneB) = ∅.

For simplicity, we suppose next that

D(G) = X
(
or D(G) ⊃ A

)
,

which, eventually, leads to the restriction of the set A. �
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Thus, we have the following result.

Theorem 3.15 If P2 satisfies conditions (3.27) and one of (3.28) or (3.29), then
x0 ∈ A is an optimal solution if and only if there exists y∗

0 ∈ −A0
Y such that

f (x0) + (
G(x0), y

∗) ≤ f (x) + (
G(x), y∗

0

)
, ∀(x, y∗) ∈ A × (−A0

Y

)
, (3.30)

that is, (x0, y
∗
0 ) is a saddle point for the Lagrange function defined by (3.26).

Proof It is clear that (3.30) follows from (3.24) and (3.25). Conversely, we first see
that, if we take y∗ = 0 in (3.30), we obtain f (x0) ≤ f (x) for every x ∈ A such
that G(x) ∈ −AY . Hence, it is sufficient to prove that G(x0) ∈ −AY . It is easy to
show that from (3.30) it follows that we have the so-called complementary slackness
condition,

(
G(x0), y

∗
0

) = 0 (3.31)

(taking x = x0 and y∗ = αy∗
0 , ∀α ≥ 0). Replacing x = x0 in (3.30), it follows that

(G(x0), y
∗) ≤ 0, ∀y∗ ∈ −A0

Y , that is, G(x0) ∈ −A00
Y = −AY (Theorem 2.26 of

bipolar), as claimed. �

Remark 3.16 The regularity condition given by (3.27) and (3.28) is equivalent to
the usual Slater condition.

(S) There exists x̄ ∈ A such that G(x̄) ∈ − intAY .

Other forms of regularity conditions, such as closedness conditions, are given in
Sect. 3.2.3.

Now, let us observe that relation (3.30) is equivalent to relations (3.24) and (3.31).
If A = D(G) = X, we find that x0 is a minimum point for the function x →
L(x, y0), x ∈ X, and hence 0 ∈ ∂(f + y∗

0 ◦ G)(x0). If f or G is continuous at x0,
we can apply the additivity property of the subdifferential

0 ∈ ∂f (x0) + ∂(y∗
0 ◦ G)(x0).

Remark 3.17 To obtain a result similar to the Kuhn–Tucker theorem, it is sufficient
to have an equality of type

∂(y∗
0 ◦ G)(x0) = y∗

0 ◦ ∂G(x0), (3.32)

where the subdifferential ∂G(x0) of the convex operator G at x0 is similarly defined
with the aid of the ordering generated by the cone AY , that is,

∂G(x0) = {
T ∈ L(X,Y ); T (x − x0) ∈ G(x) − G(x0) + AY , ∀x ∈ X

}
. (3.33)

But equality (3.32) does not generally hold. In this way, it is natural to say that the
mapping G is regular subdifferentiable at x0 if equality (3.32) is satisfied for every



3.1 Optimality Conditions 163

y∗
0 ∈ A0

Y . A sufficient condition for the regular subdifferentiability is the following:
X is a reflexive Banach space and AY has a weakly compact base which does not
contain an origin. By virtue of the above remark, Theorem 3.15 can be restated as
a theorem of Kuhn–Tucker type.

Theorem 3.18 If P2 satisfies conditions (3.27), (3.28) (or (3.29)) and G is con-
tinuous and regularly subdifferentiable on A, then an element x0 ∈ A is an optimal
solution if and only if there exists y∗

0 ∈ −A0
Y such that

0 ∈ ∂f (x0) + y∗
0 ◦ ∂G(x0),

(
y∗

0 ,G(x0)
) = 0.

It is easily seen that, if G is continuous and differentiable (for instance, if G is
Fréchet differentiable), then equality (3.32) holds (and ∂G(x0) contains a unique
element). In fact, we see later that the differentiability hypothesis allows necessary
optimality conditions to be obtained even for non-convex problems.

Note, finally, that the general problem P1 can be reformulated as a problem of
minimization of a certain function over the space X, where no constraints explicitly
appear. More precisely, P1 is equivalent to the following unconstrained problem:

min
{
f (x) + IAX

(x); x ∈ X
}
.

Let f be a lower-semicontinuous function and let AX be a closed convex set of X.
If (intAX) ∩ Dom(f ) �= ∅ or if f happens to be continuous at a point of AX, then,
by virtue of the additivity theorem for subdifferentials, we may infer that x0 is an
optimal solution if and only if

∂f (x0) ∩ (−∂IAX
(x0)

) �= ∅, (3.34)

or, equivalently,

∂f (x0) ∩ (−C0(AX;x0)
) �= ∅, (3.35)

where C(AX;x0) represents the cone generated by AX − x0. In particular, x0 ∈
intAX is an optimal solution if and only if 0 ∈ ∂f (x0) since C0(AX;x0 = {0}).
Therefore, the cases of special interest are those in which x0 /∈ intAX, that is, x0 ∈
FrAX .

By conjugacy, the optimality condition (3.34) is equivalent to the existence of an
element x∗

0 ∈ X∗, subject to

f (x0) + f ∗(x∗
0 ) + I ∗

AX
(−x∗

0 ) = 0, x0 ∈ AX,

that is,

f (x0) = inf
{
(x∗

0 , x); x ∈ AX

} − f ∗(x∗
0 ). (3.36)

Remark 3.19 If AX is the translate of a closed linear subspace, the optimality con-
dition (3.35) becomes

∂f (x0) ∩ (AX − x0)
⊥ �= ∅, x0 ∈ AX. (3.37)
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To be more specific, we consider the case of affine constraints,

(P3) min
{
f (x); G(x) = 0

}
,

where G : X → Y is an affine mapping, that is,

G(x) = T x + y0, for all x ∈ X,

with T ∈ L(X,Y ) and y0 ∈ Y .

Theorem 3.20 If f is continuous in a point of kerG and T has a closed range,
then a point x0 ∈ kerG is an optimal solution of P3 if and only if

∂f (x0) ∩ RangeT ∗ �= ∅. (3.38)

Proof We observe that AX −x0 = kerT . On the other hand, (kerT )⊥ = RangeT ∗ =
RangeT ∗ because RangeT ∗ is also closed. Hence, condition (3.38) is equivalent to
the optimality condition (3.37). �

3.1.3 Nonlinear Programming in the Case of Fréchet
Differentiability

In the following, we show that the results obtained in the convex case can be ex-
tended to the general case of the nonlinear programming if the Fréchet differentia-
bility of functions involved in the problem is required.

We return to the minimization problem

(P2) min
{
f (x); x ∈ A, G(x) ∈ −AY

}
,

where X,Y are two linear normed spaces, G : X → Y and f : X → R are two
arbitrary mappings, A is a nonvoid subset of X and AY is a closed convex cone
of Y .

Our aim her is to obtain some necessary conditions of Kuhn–Tucker type for P2.
With that end in view, we introduce some preliminary notions.

Definition 3.21 We call the cone of tangents to A at x0 ∈ A, denoted by TC(A;x0),
the set defined by

TC(A;x0) =
⋂

V ∈V (x0)

C(A ∩ V ;x0), (3.39)

where V (x0) is a base of neighborhoods for x0 (by C(M;x0) we denote the cone
generated by M − x0), that is,

⋃
λ≥0 λ(M − x0)).

It is clearly seen that TC(A;x0) is a closed cone with vertex at zero, but need not
to be convex.
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Lemma 3.22 x ∈ TC(A;x0) \ {0} if and only if there exist a sequence {xn} ⊂ A and
a sequence {λn} of positive numbers such that

xn → x0 and λn(xn − x0) → x. (3.40)

Proof Observe that relation (3.39) does not depend on the base of neighborhoods
V (x0) but, actually, it depends on the point x0. If V (x0) = {S(x0; 1

n
);n ∈ N

∗}, re-
lation (3.39) is equivalent to the fact that, for every n ∈ N

∗, there exist λn > 0 and
xn ∈ A ∩ S(x0; 1

n
) subject to λn(xn − x0) ∈ S(x; 1

n
), thereby proving the lemma. �

Definition 3.23 The cone of pseudotangents to A at x0 ∈ A, denoted by PC(A;x0),
is by definition the closed convex hull of the cone of tangents to A in x0, that is,

PC(A;x0) = cone TC(A;x0). (3.41)

In general, TC(A;x0) ⊂ C(A;x0) and, if A is convex, then

TC(A;x0) = PC(A;x0) = C(A;x0).

Moreover, if A is star-shaped at x0, that is, [x, x0] ⊂ A for every x ∈ A, then

C(A;x0) = C(A ∩ V ;x0) for each V ∈ V (x0).

Definition 3.24 We say that a set A1 is pseudoconvex with respect to a set A2 at x0
if x − x0 ∈ PC(A2;x0) for all x ∈ A1. If A1 = A2, we say that A1 is pseudoconvex
at x0.

It is clear that, if a set A is star-shaped at x0, then it is pseudoconvex at x0.
In particular, any convex set is pseudoconvex at every one of its elements. From
Definitions 3.23 and 3.24, it follows that

PC(A;x0) = PC(convA;x0) if A is pseudoconvex at x0. (3.42)

Indeed, if x ∈ TC(convA;x0), by virtue of Lemma 3.22, there exist a sequence
{xn} ⊂ convA and a sequence {λn} of positive numbers such that xn → x0 and
λn(xn − x0) → x. But xn = ∑

i α
i
nx

i
n, where {xi

n} ⊂ A, αi
n > 0,

∑
i α

i
n = 1. Hence,

xn − x0 = ∑
i α

i
n(x

i
0 − x0) ∈ PC(A;x0), in view of Definition 3.24.

Since PC(A;x0) is a closed cone, it follows that x ∈ PC(A;x0), and thus,
TC(convA;x0) ⊂ PC(A;x0), hence PC(convA;x0) ⊂ PC(A;x0).

In what follows, we use Fréchet differentiability conditions for the functions
which will intervene. We recall that a function ϕ : X1 → X2, where X1 and X2
are linear normed spaces, is Fréchet differentiable at a point x0 ∈ X1 if there exists
a mapping ϕ′

x0
∈ L(X1,X2) such that

lim
x→0

ϕ(x + x0) − ϕ(x0) − ϕ′
x0

(x)

‖x‖ = 0. (3.43)
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The mapping ϕ′
x0

is called the Fréchet differential of the function ϕ in the point x0.
We easily see that the above condition can also be written as

ϕ(x + x0) − ϕ(x0) = ϕ′
x0

(x) + ω(x0;x), ∀x ∈ X1, (3.44)

where

lim
x→0

ω(x0;x)

‖x‖ = 0. (3.44′)

Lemma 3.25 Let ϕ : X1 → X2 be a Fréchet differentiable function at x0. Then

lim
x→∞λn

[
ϕ(xn) − ϕ(x0)

] = ϕ′
x0

(x), ∀x ∈ TC(A;x0) \ {0}, (3.45)

where A ⊂ X1 and {xn}, {λn} are as in Lemma 3.22.

Proof In relation (3.44), taking x = xn − x0, n ∈N, we obtain

λn

[
ϕ(xn) − ϕ(x0)

] = ϕ′
x0

[
λn(xn − x0)

] + ∥
∥λn(xn − x0)

∥
∥ ω(x0;xn − x0)

‖xn − x0‖ ,

because ϕ′
x0

is linear and λn > 0. In view of properties (3.40) and (3.44), there
follows (3.45). �

Remark 3.26 According to Lemma 3.22, equality (3.45) becomes

ϕ′
x0

(
TC(A;x0)

) ⊂ TC
(
ϕ(A);ϕ(x0)

)
. (3.46)

Since ϕ′
x0

is linear and continuous, we also obtain

ϕ′
x0

(
PC(A;x0)

) ⊂ PC
(
ϕ(A);ϕ(x0)

)
. (3.47)

Definition 3.27 We say that a function f : X → R is pseudoconvex on A in x0 ∈ A

if it is Fréchet differentiable in x0 and possesses the property

f ′
x0

(x − x0) ≥ 0 with x ∈ A implies f (x0) ≤ f (x).

Theorem 3.28 If f is a real Fréchet differentiable function in x0 ∈ A and x0 mini-
mizes f on A, then f ′

x0
(x) ≥ 0, ∀x ∈ PC(A;x0), that is, f ′

x0
∈ −PC(A;x0)

0. If A is
pseudoconvex in x0 and f is pseudoconvex on A in x0, then the above condition is
also sufficient.

Proof For x = 0 the condition is trivially verified. By means of Lemma 3.25, we
get f ′

x0
(x) ≥ 0, ∀x ∈ TC(A;x0). This inequality may be extended to all elements

x in PC(A;x0) because f ′
x0

is a linear continuous functional. Thus, necessity is
established. For the proof of sufficiency, we note that, for every x ∈ A, by virtue of
Definition 3.24, we have x − x0 ∈ PC(A;x0 and hence f ′

x0
(x − x0) ≥ 0. Since f
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is pseudo convex, from Definitions 3.24 and 3.27 we have the result that f (x0) ≤
f (x), for all x ∈ A. This shows that x0 is an optimal solution on A. �

Let us now establish some optimality conditions for P2.
If we denote by AX the set

AX = {
x ∈ A; G(x) ∈ −AY

} = A ∩ G−1(−AY ), (3.48)

then P2 reduces to the minimization of f on AX .
A first auxiliary result is concerned with the cone of tangents to A at x0.

Lemma 3.29 If intAY �= ∅ and G is Fréchet differentiable in x0 ∈ AX , then we
have

TC(A;x0) ∩ G
′−1
x0

(
int(−AY ) − G(x0)

) ⊂ TC(AX;x0).

Proof Since TC(AX;x0) includes the origin, we can reduce our consideration to the
case in which x ∈ TC(A;x0) ∩ G

′−1
x0

(int(−AY ) − G(x0)), with x �= 0. According to
Lemma 3.25, we have

lim
n→∞λn

[
G(xn) − G(x0)

] = G′
x0

(x),

where {xn} ⊂ A and {λn} ⊂ R+ have properties (3.40).
But −G′

x0
(x) ∈ intAY + G(x0) and intAY + G(x0) is an open set. Thus, there

exists n0 ∈ N such that

λn

[
G(xn) − G(x0)

] ∈ − intAY − G(x0), ∀n > n0.

Therefore,

λnG(xn) ∈ (λn − 1)G(x0) − AY , ∀n > n0.

However, we can assume that λn > 1 because, necessarily, λn → ∞ for n → ∞
(otherwise, from property (3.40), x = 0 results). Since AY is cone and G(x0) ∈
−AY , we obtain G(xn) ∈ −AY , that is, xn ∈ AX, ∀n > n0. Hence, x ∈ TC(AX;x0)

by virtue of Lemma 3.22 and Definition (3.48) of AX . �

Theorem 3.30 If intAY �= ∅, x0 is a solution of Problem P2 and f and G are
Fréchet differentiable in x0, then there exist a real number η0 and an element y∗

0 ∈
Y ∗, not both equal to zero, such that

η0f
′
x0

(x) + (
y∗

0 ,G′
x0

(x)
) ≥ 0, ∀x ∈ K, (3.49)

η0 ≥ 0, (y∗
0 , y) ≥ 0, ∀y ∈ AY ,

(
y∗

0 ,G(x0)
) = 0, (3.50)

where K ⊂ TC(A;x0) is an arbitrary convex cone with vertex at origin.
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Proof Let x0 be an optimal solution of P2. By virtue of Theorem 3.28, it fol-
lows that f ′

x0
takes its minimum value on TC(AX;x0) at the origin. According to

Lemma 3.29, we obtain so much the more that the origin is an optimal solution of
the problem

min
{
f ′

x0
(x); x ∈ TC(A;x0),G

′
x0

(x) + G(x0) ∈ −intAY

}
.

Since f ′
x0

is linear and continuous, we obtain the result that the origin is also an
optimal solution for the following problem with operatorial convex constraints:

min
{
f ′

x0
(x); x ∈ K, G′

x0
(x) + G(x0) ∈ −AY

}
. (3.51)

Taking into account the results of the preceding section, we see that if intAY �= ∅,
there exists a Lagrange multiplier (η0, y

∗
0 ), that is, (3.20) and (3.21) hold

η0f
′
x0

(x) + (
y∗

0 ,G′
x0

(x) + G(x0)
) ≥ 0, ∀x ∈ K,

η0 ≥ 0, (y∗
0 , y) ≥ 0, ∀y ∈ AY .

(Here, the role of A and G(x) is played by K and G′
x0

(x) + G(x0), respectively.)
Now, the proof is finished if we observe that the complementarity slackness condi-
tion, (y∗

0 ,G(x0)) = 0, is also verified. Indeed, for x = 0 we obtain (y∗
0 ,G(x0)) ≥ 0.

But G(x0) ∈ −AY and y∗
0 ∈ −A0

Y yield (y∗
0 ,G(x0)) ≤ 0, that is, (y∗

0 ,G(x0)) = 0. �

Remark 3.31 In view of the definition of the polar of a cone, we observe that rela-
tions (3.49) and (3.50) may be, equivalently, written as

η0f
′
x0

+ y∗
0 ◦ G′

x0
∈ −K0, (3.52)

η0 ≥ 0, y0 ∈ −A0
Y ,

(
y∗

0 ,G(x0)
) = 0, (3.53)

respectively.

Let us now consider the problem

(P2) min
{
f (x); G(x) ∈ AY

}
,

which may be obtained from (P2) by taking A = X.
Since TC(X;x0) = X and X0 = {0}, we can take K = X and so, in this case,

Condition (3.49) becomes

η0f
′
x0

(x) + y∗
0

(
G′

x0
(x)

) = 0, ∀x ∈ X,

that is,

η0f
′
x0

+ y∗
0 ◦ G′

x0
= 0.
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Remark 3.32 If AY = {0}, relation (3.49) is again satisfied if the range of G′
x0

is
closed. Moreover, if G′

x0
is surjective or if f ′

x0
∈ RangeG′

x0
, then both η0 and y∗

0
may be chosen to be nonzero (see Norris [81]). The affine case is considered in the
next Theorem 3.35.

As we easily see from the proof of the above theorem, the interiority condition,
intAY �= ∅, is essential only to use Lemma 3.25, which ensures us that the origin is
an optimal solution for problem (3.51). However, it can also be shown that, in the
case of closed affine sets, the results continue to remain valid even if the interiority
condition is violated.

Certainly, a remarkable case is that for which η0 �= 0, for example, if there exists
x̄ ∈ −K such that G′

x0
(x̄) ∈ G(x0) + intAY (according to Theorem 3.15 and Re-

mark 3.16, via (3.51)). In such a case, we can suppose, without loss of generality,
that η0 = 1. In what follows, we point out a situation in which this fact is possible.

We set

K = {
x ∈ X; G′

x0
(x) ∈ PC

(−AY ;G(x0)
)}

, (3.54)

H = {
x∗ ∈ X∗; x∗ = y∗ ◦ G′

x0
, y∗ ∈ PC

(−AY ;G(x0)
)0}

= G′∗
x0

(
PC

(−AY ;G(x0)
)0)

, (3.55)

and observe that both sets are convex cones with the vertex at the origin. Moreover,
K is closed.

Theorem 3.33 Let f and G be two Fréchet differentiable functions in x0 ∈ AX

and let H be w∗-closed. If there exists a closed convex cone K1 ⊂ X subject to
K ∩ K1 ⊂ PC(AX;x0) and K0 + K0

1 is w∗-closed in X∗, a necessary condition for
x0 to be an optimal solution to Problem P2 is the existence of an element y∗

0 ∈ Y ∗
which satisfies the properties

(y∗
0 , y) ≤ 0, ∀y ∈ PC

(−AY ;G(x0)
)
, (3.56)

f ′
x0

(x) + (
y∗

0 ,G′
x0

(x)
) ≥ 0, ∀x ∈ K1. (3.57)

Furthermore, if AX is pseudoconvex in x0, f is pseudoconvex on AX in x0 and AX ⊂
x0 +K1, then the above conditions are also sufficient for optimality in Problem P2.

Proof Let x0 be an optimal solution of P2. From Theorem 3.28, it follows that
f ′

x0
∈ −PC(AX;x0)

0.
We easily observe that, because K and K1 are cones, from the definition of the

polar, we have (K ∩ K1)
0 = K0 + K0

1 ⊃ PC(AX;x0)
0 (because K0 + K0

1 is w∗-
closed). But, by hypothesis, according to Theorem 3.28, we have −f ′

x0
∈ K0 + K0

1 ,

which says that there exists x∗
0 ∈ K0 such that f ′

x0
+ x∗

0 ∈ −K0
1 . Now, let us show

that K0 ⊂ H , or equivalently (by virtue of the bipolar theorem, see Theorem 2.26)
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that H 0 ⊂ K . Indeed, if x ∈ H 0, from (3.55) and the definition of the polar, it fol-
lows that

(y∗ ◦ G′
x0

, x) ≤ 0, ∀y∗ ∈ PC
(−AY ;G(x0)

)0
,

that is,

G′
x0

(x) ∈ PC
(−AY ;G(x0)

)00
.

Since PC(−AQY ;G(x0)) is a closed convex set and inasmuch as it con-
tains the origin, from the same bipolar theorem we have PC(−AY ;G(x0))

00 =
PC(−AY ;G(x0)). Hence G′

x0
(x) ∈ PC(−AY ;G(x0)) which implies that x ∈ K by

virtue of relation (3.54). Therefore, K0 ⊂ H , that is, x∗
0 ∈ H . On the other hand,

from relation (3.55) we have the result that there exists y∗
0 ∈ PC(−AY ;G(x0))

0

such that x∗
0 = y∗

0 ◦ G′
x0

. Consequently, f ′
x0

+ y∗
x0

◦ G′
x0

∈ −K0
1 with y∗

0 ∈
PC(−AY ;G(x0))

0. In this way, necessity of conditions (3.56) and (3.57) is com-
pletely proved.

Let us now prove sufficiency. Since x − x0 ∈ K1, for all x ∈ AX , from inequal-
ity (3.56) we obtain

f ′
x0

(x − x0) + (
y∗

0 ,G′
x0

(x − x0)
) ≥ 0, for all x ∈ AX. (3.58)

Because AX is pseudoconvex in x0, we have x − x0 ∈ PC(AX;x0), for all x ∈ AX .
By virtue of Remark 3.26 and noting that G(AX) ⊂ −AY , we obtain

G′
x0

(
PC(AX;x0)

) ⊂ PC
(−AY ;G(x0)

)
.

Thus, making use of the pseudoconvexity of the set AX , we obtain G′
x0

(x − x0) ∈
PC(−AY ;G(x0)), ∀x ∈ AX. From inequality (3.56) we have the result (y∗,G′

x0
(x−

x0)) ≤ 0, ∀x ∈ AX which, by virtue of relation (3.58), implies f ′
x0

(x − x0) ≥ 0,
∀x ∈ AX . Since f is pseudoconvex on AX in x0, the latter yields f (x0) ≤ f (x), for
all x ∈ AX , that is, x0 ∈ AX is an optimal solution of Problem P2.

Now, we divert our attention to the important case K = PC(AX;x0), that is,
G′−1

x0
(PC(−AY ;G(x0))) = PC(AX;x0). Observe that K1 = PC(AX;x0) satisfies

the required conditions by hypothesis. This implies that, if H is w∗-closed, inequal-
ity (3.57) holds on PC(AX;x0).

On the other hand, it is natural to ask what the connections are between mini-
mizing on AX and minimizing on x0 + PC(AX;x0). A partial answer is given by
Theorem 3.34 below. �

Theorem 3.34 If x0 minimizes a convex continuous function f on a subset A, then
x0 also minimizes f on x0 + PC(A;x0).

Proof Because of the convexity and the continuity of f it is sufficient to show that
x0 minimizes f on x0 +TC(A;x0). If TC(A;x0) = {0}, the assertion is trivial. Thus,
let TC(A;x0) �= {0}. Assume that an element x ∈ x0 + TC(A;x0) exists such that
f (x) < f (x0). From Lemma 3.22 there exists {xn} ⊂ A with xn → x0 and {λn} ⊂
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R+ with λn(xn − x0) → x − x0. From continuity we have the result that there exists
n0 ∈ N, such that f (x0 + λn(xn − x0)) < f (x0), ∀n > n0. We can assume λn > 1,
∀n > n0, since λn → ∞. From the convexity, we obtain

f (xn) = f

[
1

λn

(
λnxn + (1 − λn)x0

) +
(

1 − 1

λn

)

x0

]

≤ 1

λn

f
(
λnxn + (1 − λn)x0

) +
(

1 − 1

λn

)

f (x0) < f (x0),

which is impossible because xn ∈ A. �

We note that Theorem 3.33 has several virtues in comparison to Theorem 3.30.
The first and most important consists of the fact that we can disregard the regularity
condition intAY �= ∅. In particular, this allows us to use the Kuhn–Tucker optimality
conditions for constraints given by equalities.

For example, if T ∈ L(X,Y ), k ∈ Y , then the problem with affine constraints

(P4) min
{
f (x); T (x) = k

}

may be obtained from P2 for A = X, AY = {0} and G(x) = T x − k, ∀x ∈ X.
The Fréchet differentiability condition is satisfied and G′

x0
= T . We also

observe that PC(−AY ;G(x0)) = {0}; hence, K = kerT , H = Range(T ∗) and
PC(AX;x0) = kerT . Therefore, the hypotheses of Theorem 3.33 are satisfied for
K1 = X noting that RangeT ∗ is w∗-closed if RangeT is closed.

Theorem 3.35 Let f be a Fréchet differentiable function in x0 and T with the
closed range. If x0 is an optimal solution of Problem P4, then there exists y∗

0 ∈ Y ∗
such that

f ′
x0

(x) + (y∗
0 , T x) = 0, ∀x ∈ X. (3.59)

If f is pseudoconvex on T −1(k) in x0 ∈ T −1(k) and there exists y∗
0 ∈ Y ∗ subject

to condition (3.59), then x0 is an optimal solution for P4.

Now, let us consider the Lagrange function associated to Problem P2, L : A ×
(−A0

Y ) →R, defined by

L(x, y∗) = f (x) + (
y∗,G(x)

)
, ∀[x, y∗] ∈ A × (−A0

Y

)
. (3.60)

We establish the relationship between the solutions of Problem P2 and the ex-
istence of the saddle points of L with respect to the minimization on A and the
maximization on −A0

Y , that is, the problem of the existence of a pair (x0, y
∗
0 ) ∈

A × (−A0
Y ) such that

L(x0, y
∗) ≤ L(x0, y

∗) ≤ L(x, y∗
0 ), ∀(x, y∗) ∈ A × (−A0

Y

)
. (3.61)
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Theorem 3.36 Let (x0, y
∗) be a saddle point of L on A × (−A0

Y ). Then, x0 is an
optimal solution of P2. Moreover, if f and G are Fréchet differentiable in x0, then
conditions (3.49) and (3.50) are satisfied with η0 = 1.

Proof If (x0, y
∗
0 ) is a saddle point of L on A × (−A0

Y ), we have

f (x0) + (
y∗,G(x0)

) ≤ f (x0) + (
y∗

0 ,G(x0)
) ≤ f (x) + (

y∗
0 ,G(x)

)
,

for every x ∈ A and y∗ ∈ −A0
Y . But y∗ +y∗

0 −A0
Y for all y∗ ∈ −A0

Y because A0
Y is a

cone. Replacing y∗ by y∗ + y∗
0 in the left-hand side of this last inequality, we obtain

(y∗,G(x0)) ≤ 0, ∀y∗ ∈ −A0
Y , and hence G(x0) ∈ (−A0

Y )0 = −AY , that is, x0 ∈ AX .
In particular, (y∗

0 ,G(x0)) ≤ 0. Also, the converse inequality is valid (taking y∗ = 0)

and so, we obtain (y∗
0 ,G(x0)) = 0. Since x0 ∈ AX and since, from the relation on the

right-hand side of the inequality mentioned above, we have f (x0) ≤ f (x), we find
that x0 is an optimal solution of P2. Moreover, relations (3.50) hold. Relation (3.49)
can be obtained from the right-hand side of the same inequality using the Fréchet
differentiability definition. �

Remark 3.37 When A is convex and f is convex (consequently, L becomes convex-
concave), conditions (3.49) and (3.50), satisfied with η0 = 1, are sufficient in order
that (x0, y

∗
0 ) be a saddle point of L; in particular, x0 is an optimal solution to Prob-

lem P2. Finally, we note that condition (3.50) may be written as (3.56) because
(y∗

0 , y) ≤ 0, for all y ∈ −AY , implies (y∗
0 , y) ≤ 0, ∀u ∈ −AY −G(x0) (we recall that

(y∗
0 ,G(x0)) = 0). Since y∗

0 is a linear continuous functional, we obtain (y∗
0 , u) ≤ 0,

for all u ∈ PC(−AY ;G(x0)), which implies the desired relation (3.56).

A refinement of the results of the Kuhn–Tucker type for the non-convex case can
be obtained using the concept of tangent cone, in Clarke’s sense, given by

T̃C(A;x0) = {y; ∀λn ↗ ∞ and {xn} ⊂ A, xn → x0 there exists {yn} ⊂ A such
that λn(yn − xn) → y}.

This tangent cone is always closed, convex and it contains the origin. We also have
T̃C(A;x0) ⊂ TC(A;x0). A special role is played by the so-called tangentially regu-
lar points x0 for which we have T̃C(A;x0) = TC(A;x0).

3.2 Duality in Convex Programming

Roughly speaking, the duality method reduces the infimum problem inf{f + g} to
a similar problem formulated in terms of conjugate functions f ∗ and g∗. In this
section, we present the basic results of this theory.
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3.2.1 Dual Convex Minimization Problems

Consider the equation

∂ϕ(x∗) + ∂ψ(x∗) � 0,

where ϕ and ψ are lower semicontinuous convex functions. Clearly, the above equa-
tion can be rewritten as

∂ϕ∗(y∗) − ∂ψ∗(−y∗) � 0.

As seen earlier, if intD(ϕ) ∩ D(ψ), x is a solution to the minimization problem

(P0) Min
{
ϕ(x) + ψ(x)

}
,

while y∗ ∈ ∂ψ(x∗) is a solution to

(P∗
0) Min

{
ϕ∗(y) + ψ∗(−y)

}
,

where ϕ∗ and ψ∗ are conjugate of ϕ and ψ , respectively. We have obtained, there-
fore, a close relationship between P0 and P∗

0, which is called dual of P0.
In the sequel, starting from this simple example, we present a general way to de-

fine the dual of a given problem, which relies on the conjugate duality of functions.
Let X,Y be real Banach spaces and X∗, Y ∗, respectively, their duals or, more

generally, two dual systems. In both cases we denote the duality functional by (·, ·),
understanding in each case that we consider the duality (X,X∗) or (Y,Y ∗). Suppose
that the spaces are equipped with compatible topologies with respect to the dual
systems.

Naturally, we obtain a duality between X × Y and X∗ × Y ∗ given by

(
(x, y), (x∗, y∗)

) = (x, x∗) + (y, y∗), ∀(x, y) ∈ X × Y, (x∗, y∗) × X∗ × Y ∗.
(3.62)

Let F : X × Y →R be a function subject to

F(x,0) = f (x), ∀x ∈ X, (3.63)

where f : X →R is a given function.
We consider the minimization problem

(P) min
{
f (x); x ∈ X

}
.

Definition 3.38 The maximalization problem

(P∗) max
{−F ∗(0, y∗); y∗ ∈ Y ∗},

where F ∗ is the conjugate function of F with respect to the duality given by (3.62),
is called the dual problem of P with respect to the family of perturbations generated
by F .
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Thus, we recall that, by virtue of the definition of the conjugate function (see
Chap. 2, Sect. 2.1.4), we have

F ∗(x∗, y∗) = sup
{
(x, x∗) + (y, y∗) − F(x, y); (x, y) ∈ X × Y

}
, (3.64)

and hence

F ∗(0, y∗) = sup
{
(y, y∗) − F(x, y); (x, y) ∈ X × Y

}
. (3.65)

Similarly, we can define the bidual problem of P as

(P∗∗) min
{
F ∗∗(x,0); x ∈ X

}
.

Since F ∗∗∗ = F ∗, the duals of higher order of P identify either with P∗ or with
P∗∗. If P∗∗ identifies with P , that is F ∗∗(x,0) = F(x,0), ∀x ∈ X (for instance,
if F is a proper, lower-semicontinuous convex function on X × Y), then we have a
complete duality between P and P∗, because they are dual to each other.

A first remarkable result concerns the relationship existing between the values of
the two problems.

Proposition 3.39

−∞ ≤ supP∗ ≤ infP ≤ +∞. (3.66)

Proof From relation (3.65), by virtue of (3.63), we obtain

F ∗(0, y∗) ≥ (0, y∗) − F(x,0) = −F(x,0) = −f (x)

for all x ∈ X and y∗ ∈ Y ∗, which, obviously, implies relation (3.66). �

Definition 3.40 Problem P is called normal if

−∞ < infP = supP∗ < +∞. (3.67)

Consider, for every y ∈ Y , the minimization problem

(Py) min
{
F(x, y); x ∈ X

}
,

called the perturbed problem of P .
It is clear that P0 = P . Hence, according to condition (3.63), the function F

can be considered as a source of perturbations for Problem P .
The function h : Y →R, defined by

h(y) = infPy = inf
{
F(x, y); x ∈ X

}
, (3.68)

is called the value function of the family {Py;y ∈ Y }.
According to condition (3.63), we have

h(0) = infP. (3.69)
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Lemma 3.41 If F is convex on X × Y , then its value function h is convex on Y .

Proof If y1, y2 ∈ Dom(h), from relation (3.68) we have the result that for any ε > 0
there exist x1, x2 ∈ X such that

h(yi) ≤ F(xi, yi) ≤ h(yi) + ε, ∀i = 1,2.

Thus, we have

h(λ1y1 + λ2y2) = inf
{
F(x,λ1y1 + λ2y2); x ∈ X

}

≤ F(λ1x1 + λ2x2, λ1y1 + λ2x2) ≤ λ1F(x1, y1) + λ2F(x2, y2)

≤ λ1h(y1) + λ2h(y2) + ε,

for all λ1, λ2 ≥ 0 with λ1 + λ2 = 1 and ε > 0. Since ε > 0 is arbitrary, this implies
the convexity of the function h.

We easily see that

h∗(y∗) = F ∗(0, y∗), ∀y∗ ∈ Y ∗. (3.70)

Indeed, we have

h∗(y∗) = sup
y∈Y

{
(y, y∗) − h(y)

} = sup
y∈Y

{
(y, y∗) − inf

x∈X
F(x, y)

}

= sup
(x,y)∈X×Y

{
(y, y∗) − F(x, y)

} = F ∗(0, y∗).

From relation (3.70) it follows, in particular, that P∗ is straightforwardly related
to h; more precisely, the following relation holds:

supP∗ = h∗∗(0), (3.71)

because from the definition of the conjugate of a function and from relation (3.70)
we have

supP∗ = sup
{−F ∗(0, y∗); y∗ ∈ Y ∗} = sup

{
(0, y∗)−h∗(y∗); y∗ ∈ Y ∗} = h∗∗(0).

�

Remark 3.42 Since infP = h(0), we observe that inequality (3.66) actually re-
duces to the obvious inequality h∗∗(0) ≤ h(0). This fact allows one to find several
examples to demonstrate that in inequality (3.66) all the cases could occur.

Theorem 3.43 Problem P is normal if and only if h(0) is finite and h is lower-
semicontinuous at the origin.
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Proof Since h is a proper convex function we may infer that clh = lim infh. On
the other hand, from Corollary 2.23, in Chap. 2, we have h∗∗ = clh. Therefore,
P is normal, that is, we have h∗∗(0) = h(0) ∈ R, if and only if h(0) is finite and
h(0) = lim infy→0 h(y) (here, we have used relations (3.63) and (3.71)). �

Now, let us study the relationship between the normality of the primal problem
P and the normality of the dual problem P∗. Using Definition 3.40, we see that
P∗ is normal if and only if

supP∗ = infP∗∗, (3.72)

where the common value is finite.
We have already seen that if F is a lower-semicontinuous proper convex function

on X × Y , then P∗∗ coincides with P because under these conditions F ∗∗ = F .
We summarize this in the next proposition.

Proposition 3.44 If F is a proper, lower-semicontinuous convex function on X×Y ,
then P is normal if and only if P∗ is normal.

Since P∗ represents the maximization of an upper-semicontinuous, concave
function, it is natural to expect that the properties of the dual problem are more
intricate than those of this primal problem. In fact, one has the following proposi-
tion.

Proposition 3.45 The set of solutions to the dual problem P∗ coincides with
∂h∗∗(0).

Proof The element y∗
0 ∈ Y ∗ is a solution of P∗ if and only if

−F ∗(0, y∗
0 ) ≥ −F(0, y∗), ∀y∗ ∈ Y ∗.

According to relation (3.70), we obtain

h∗(y∗
0 ) ≤ h∗(y∗), ∀y∗ ∈ Y ∗,

which shows that y∗
0 is a minimum point of h∗ on Y ∗ or, equivalently, 0 ∈ ∂h∗(y∗

0 ).
Because h∗ is convex and lower-semicontinuous, using Proposition 2.2 in Chap. 2,
we may express this condition as y∗

0 ∈ ∂h∗∗(0). �

Definition 3.46 Problem P is said to be stable if it is normal and P∗ has at least
one solution.

Remark 3.47 We easily see that if F is a convex function, so an element (x0, y
∗
0 ) ∈

X × Y ∗ constitutes a pair of solutions to P and P∗ which satisfy the normality
condition (3.67), if and only if the following relation holds:

F(x0,0) + F ∗(0, y∗
0 ) = 0. (3.73)



3.2 Duality in Convex Programming 177

Indeed, F(x0,0) = infP and −F ∗(0, y∗
0 ) = supP∗ if and only if (x0, y

∗
0 ) is a

pair of solutions. Since ((x0,0), (0, y∗
0 )) = 0, it follows from a characteristic prop-

erty of the subdifferential (see Proposition 2.2, Chap. 2) that relation (3.73) is equiv-
alent to

(0, y∗
0 ) ∈ ∂F (x0,0). (3.74)

Moreover, if F is a lower-semicontinuous function, this relation is also equivalent to

(x0,0) ∈ ∂F ∗(0, y∗
0 ). (3.75)

In the following text, the following condition is required.

(A) F is a proper, convex lower-semicontinuous function on X × Y .

As we have already seen, this hypothesis ensures the coincidence of Problems
P and P∗∗; hence, Problems P and P∗ are dual to each other.

Theorem 3.48 If the function F satisfies Hypothesis (A), then the stability of Prob-
lem P is equivalent to the subdifferentiability at the origin of the function h, that is,
∂h(0) �= ∅.

Proof In view of the above proposition, Problem P∗ has solutions if and only if
∂h∗∗(0) �= ∅. By virtue of Theorem 3.43 and Definition 3.46 it remains to be proven
that, if h is lower-semicontinuous at the origin, that is, h(0) = h∗∗(0), then ∂h(0) =
∂h∗∗(0).

Indeed, it is well known that y∗ ∈ ∂h(0) if and only if h(0)+h∗(y∗) = (0, y∗) =
0 or, equivalently, h∗∗(0) + h∗∗∗(y) = (0, y∗), that is, y∗ ∈ ∂h∗∗(0). �

Now, let us attach to Problem P (with respect to the perturbation function F)

the Hamiltonian H : X × Y ∗ →R defined by

H(x,y∗) = sup
{
(y, y∗) − F(x, y); y ∈ Y

}
. (3.76)

We observe that, for each x ∈ X, the function H(x, ·) is the convex conju-
gate of F(x, ·). Thus, the function y∗ → H(x,y∗), y∗ ∈ Y ∗, is convex and lower-
semicontinuous on Y ∗. On the other hand, the function x → H(x,y∗), x ∈ X, is
concave and closed on X for every y∗ ∈ Y ∗.

In the following, we show that, under Hypothesis (A), Problems P and P∗ arise
as dual problems in minimax form generated by the Hamiltonian H .

We recall that the pair (x0, y
∗
0 ) ∈ X×Y ∗ is a saddle point for the concave-convex

Hamiltonian function H if and only if

H(x,y∗
0 ) ≤ H(x0, y

∗
0 ) ≤ H(x0, y

∗), ∀(x, y∗) ∈ X × Y ∗. (3.77)

(See Sect. 2.3.1, Chap. 2.)
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Theorem 3.49 If F satisfies Condition (A), then the following statements are equiv-
alent:

(i) (x0, y
∗
0 ) is a saddle point of H on X × Y ∗.

(ii) x0 is an optimal solution of P , y∗
0 is an optimal solution of P∗ and their values

are equal.

Proof We have

supP∗ = sup
y∗∈Y ∗

{−F ∗(0, y∗)
}

= − inf
y∗∈Y ∗ sup

x∈X

sup
y∈Y

{
(y, y∗) − F(x, y)

}

= − inf
y∗∈Y ∗ sup

x∈X

H(x, y∗). (3.78)

Since F is convex and lower-semicontinuous on X × Y , it follows that the func-
tion Fx(·) = F(x, ·) is also convex and lower-semicontinuous on Y for each x ∈ X.
According to the bipolar theorem (see Theorem 2.26, Chap. 2), we obtain

F(x,0) = F ∗∗
x (0) = sup

y∗∈Y ∗

{
(0, y∗) − F ∗

x (y∗)
}

= − inf
y∗∈Y ∗ sup

y∈Y

{
(y, y∗) − F(x, y)

}

= − inf
y∗∈Y ∗ H(x,y∗). (3.79)

Hence

infP = inf
x∈X

F(x,0) = − sup
x∈X

inf
y∗∈Y ∗ H(x,y∗). (3.80)

�

Now, we conclude the proof as a direct consequence of relations (3.78)
and (3.70).

Corollary 3.50 If P is stable, then x0 ∈ X is a solution of P if and only if there
exists y∗

0 ∈ Y ∗ such that (x0, y
∗
0 ) is a saddle point of the Hamiltonian.

Corollary 3.51 The Hamiltonian H has at least one saddle point if and only if both
P and P∗ are stable.
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3.2.2 Fenchel Duality Theorem

Consider now the special case when the perturbations are generated by translations
Let the primal problem be defined by

(P1) min
{
f (x) − g(Ax); x ∈ X

}
,

where X,Y are real Banach spaces, f : X → ]−∞,+∞] is proper, convex and
lower-semicontinuous function, g : Y → [−∞,+∞[ is a proper, concave and
upper-semicontinuous function and A : X → Y is a linear continuous operator.

As a perturbation function F : X × Y →R, we take

F(x, y) = f (x) − g(Ax − y). (3.81)

In this way, it is clear that we can apply the duality results just presented in the
preceding section.

First, we determine the conjugate of F . We have

F ∗(x∗, y∗) = sup
(x,y)∈X×Y

{
(x, x∗) + (y, y∗) − f (x) + g(Ax − y)

}

= sup
x∈X

sup
z∈Y

{
(x, x∗) + (Ax,y∗) − f (x) + g(z) − (z, y∗)

}

= sup
x∈X

{
(x, x∗) + (x,A∗y∗) − f (x)

} − inf
z∈Y

{
(z, y∗) − g(z)

}

= f ∗(A∗y∗ + x∗) − g∗(y∗),

where f ∗ is the convex conjugate of f , while g∗ is the concave conjugate of g, and
A∗ is the adjoint of A.

Therefore,

F ∗(0, y∗) = f ∗(A∗y∗) − g∗(y∗), ∀y∗ ∈ Y ∗. (3.82)

Hence, the dual problem is given by

(P∗
1 ) max

{
g∗(y∗) − f ∗(A∗y∗); y∗ ∈ Y ∗}.

We note that P1 is consistent if at least one element x ∈ X exists, such that
f (x) < ∞ and g(Ax) > −∞, that is,

A
(
Dom(f )

) ∩ Dom(g) �= ∅. (3.83)

Similarly, P∗
1 is consistent if

A∗(Dom(g∗)
) ∩ Dom(f ∗) �= ∅. (3.84)

From Proposition 3.39 it follows that, if P1 and P∗
1 are consistent, then their values

are both finite.
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Using the convexity and semicontinuity of f and g, we obtain a complete duality
between P1 and P∗

1 since f,f ∗ and g,g∗, respectively, are mutually conjugate.
Moreover, the dual problem P∗

1 is equivalent to a minimization problem of type
P1. Indeed, P∗

1 can be rewritten as

min
{
f1(y

∗) − g1(A1y
∗); y∗ ∈ Y ∗},

where f1(y
∗) = −g∗(y∗), g1(x

∗) = −f ∗(x∗) and A1 = A∗ (changing X by Y ∗ and
Y by X∗). Therefore, the results established for P1 can be transposed by the above
change to the dual problem P∗

1 . In our case, Condition (A) for F is superfluous
because P1 and P∗

1 are mutual duals, that is, P∗∗
1 = P1.

As we have seen earlier (Theorems 3.43 and 3.48), the properties of Problems
P1 and P∗

1 depend on the properties of the convex function h : Y → R given by

h(y) = inf
{
f (x) − g(Ax − y); x ∈ X

}
, ∀y ∈ Y. (3.85)

For instance, if P1 is consistent and h is lower-semicontinuous at the origin, then
P1 is normal or, equivalently, P∗

1 is normal (see Proposition 3.44).

Lemma 3.52 If there exists x0 ∈ X, such that f (x0) < +∞ and g is continuous at
Ax0, then h is continuous in a neighborhood of the origin.

Proof Since h is convex (Lemma 3.41), it suffices to prove that h is upper-bounded
on a certain neighborhood of the origin (Theorem 2.14, Chap. 2). Applying the
continuity, we have the result that the concave function g is bounded from below
on a neighborhood of Ax0. Hence, an open neighborhood V0 of the origin exists in
Y such that g(Ax0 − y) ≥ M , ∀y ∈ V0. However, h(y) ≤ f (x0) − g(Ax0 − y) ≤
f (x0) − M , ∀y ∈ V0, which implies the continuity of h on V0, as claimed. �

Theorem 3.53 Under the hypothesis of Lemma 3.52, Problem P1 is stable, in other
words the equality

inf
{
f (x) − g(Ax); x ∈ X

} = max
{
g∗(y∗) − f ∗(A∗y∗); y∗ ∈ Y ∗} (3.86)

holds.
Also, the following two properties are equivalent:

(i) (x0, y
∗
0 ) ∈ X × Y ∗ is a couple of solutions for P1 and P∗

1 .
(ii) x0 ∈ X and y∗

0 ∈ Y ∗ verify the system

0 ∈ ∂f (x0) − A∗y∗
0 , 0 ∈ y∗

0 − ∂g(Ax0). (3.87)

Proof Since h is continuous at the origin, it is also subdifferentiable at this point
(see Proposition 2.36, Chap. 2). By virtue of Theorem 3.48, Problem P1 is stable.
On the other hand, in view of Theorem 3.49, every couple of solutions (x0, y

∗
0 ) for

P1 and P∗
1 is a saddle point of the Hamiltonian

H(x,y∗) = sup
{
(y, y∗)+g(Ax −y)−f (x); y ∈ Y

} = (Ax,y∗)−g∗(y∗)−f (x).
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But we know (see Sect. 2.3.2, Chap. 2) that the saddle points of H coincide with
the solutions of equation (0,0) ∈ ∂H(x, y∗). Making an elementary calculation, we
obtain the equivalence of properties (i) and (ii). We note that, in (ii), by ∂g we mean
the subdifferential in the sense of concave functions, that is, ∂g = −∂(−g). �

As a consequence of Theorem 3.53, taking X = Y and A as identity operator, we
obtain a remarkable result in duality theory known in the literature as the Fenchel
duality theorem.

Theorem 3.54 (Fenchel) Let f and −g be proper convex lower-semicontinuous
functions on X. If there exists an element x̄ ∈ Dom(f )∩ Dom(g) such that either f

or g is continuous at x̄, then the following equality holds:

inf
{
f (x) − g(x); x ∈ X

} = max
{
g∗(x∗) − f ∗(x∗); x∗ ∈ X∗}. (3.88)

Remark 3.55 From relations (3.86) and (3.88) we see that the dual problem always
has solutions; but this is not always the case with the primal problem. Furthermore,
if in a point x0 we have

∂f (x0) ∩ ∂g(x0) �= ∅,

then in relation (3.88) the infimum is attained. The points of ∂f (x0) ∩ ∂g(x0) are
optimal solutions to the dual problem P∗

1 .

Remark 3.56 A characterization of the elements x ∈ X such that (3.88) holds will
be established in the next section.

Under more general conditions, namely without the reflexivity properties of the
space, we can prove, as a consequence of the Fenchel theorem, the additivity theo-
rem of the subdifferential (see Corollary 2.63 and Remark 2.64).

Theorem 3.57 If the functions f1 and f2 are finite at a point in which at least one
is continuous, then

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x), ∀x ∈ X. (3.89)

Proof First, we prove that for every x∗ ∈ X∗ there exists u∗
0 ∈ X∗ such that

(f1 + f2)
∗(x∗) = f ∗

1 (x∗ − u∗
0) + f ∗

2 (u∗
0). (3.90)

Indeed, if we take in the Fenchel theorem f = f2 and g = x∗−f1, we have f ∗ = f ∗
2

and

g∗(u∗) = inf
x∈X

{
(u∗, x) − g(x)

}

= inf
x∈X

{
(u∗ − x∗, x) + f1(x)

}
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= − sup
x∈X

{
(x∗ − u∗, x) − f1(x)

}

= −f ∗
1 (x∗ − u∗).

From equality (3.88), we obtain

inf
x∈X

{
f1(x) + f2(x) − (x∗, x)

} = max
u∗∈X∗

{−f ∗
1 (x∗ − u∗) − f2(u

∗)
}

which yields relation (3.90).
Now, consider x∗ in ∂(f1 + f2)(x). By virtue of Proposition 2.33, we have

(f1 + f2)(x) + (f1 + f2)
∗(x∗) = (x∗, x).

Using relation (3.90), we obtain

f1(x)+f ∗
1 (x∗ −u∗

0)+f2(x)+f ∗
2 (u∗

0) = (x∗, x) = (x∗ −u∗
0, x)+ (u∗

0, x). (3.91)

On the other hand, it is clear that

f1(x) + f ∗
1 (x∗ − u∗

0) ≥ (x∗ − u∗
0, x),

f2(x) + f ∗
2 (u∗

0) ≥ (u∗
0, x).

However, according to relation (3.91), the equality sign must hold in both inequa-
lities. By virtue of the same Proposition 2.33, it follows that x∗ − u∗

0 ∈ ∂f1(x) and
u∗

0 ∈ ∂f2(x), that is, x∗ ∈ ∂f1(x)+ ∂f2(x). Hence ∂(f1 +f1)(x) ⊂ ∂f1(x)+ ∂f2(x).
The converse inclusion is always true without supplementary hypotheses concerning
the functions f1 and f2. Thus, relation (3.89) is completely proved. �

We note that the hypotheses of Lemma 3.52, which was essential for establishing
the preceding results, imply a consistency condition stronger than condition (3.83),
namely

A
(
Dom(f )

) ∩ int Dom(g) �= ∅. (3.92)

In this case, we say that P1 is strongly consistent.
Since X and Y are Banach spaces, if P1 is strongly consistent and normal,

we can conclude that P1 is also stable because the normality implies the lower-
semicontinuity of the function h at 0 ∈ int Dom(h). From Proposition 2.16, we
obtain the continuity of the function h at the origin, which clearly implies that
∂h(0) �= ∅. Now, from Theorem 3.48, we immediately obtain the desired conclu-
sion.

In the finite-dimensional case, because the restriction of a convex function to its
effective domain is continuous in the relative interior points (see Proposition 2.17),
the stability is provided only by the interiority condition

A
(
ri Dom(f )

) ∩ ri Dom(g) �= ∅. (3.93)
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Finally, let us determine the Hamiltonian of Problem P1. By virtue of rela-
tions (3.76) and (3.81), we obtain

H(x,y∗) = sup
{
(y, y∗) − f (x) − g(Ax − y); y ∈ Y

}

= −f (x) − inf
{
(−Ax,y∗) + (u, y∗) − g(u); u ∈ Y

}

= −f (x) + (Ax,y∗) − g∗(y∗)

= −K(x,y∗), (3.94)

where

K(x,y∗) = f (x) + g∗(y∗) − (Ax,y∗), (x, y∗) ∈ Dom(f ) ∩ Dom(g∗) (3.95)

is just the Kuhn–Tucker function associated with the problems P1 and P∗
1 . Hence,

K is convex-concave. Theorem 3.49, together with Corollary 3.50, yields the next
theorem.

Theorem 3.58 The Kuhn–Tucker function attached to Problems P1 and P∗
1 ad-

mits a saddle point if and only if P1 and P∗
1 are stable. A point (x0, y

∗
0 ) ∈ X × Y ∗

is a pair of solutions for P1 and P∗
1 with the same extremal values if and only if it

is a saddle point for the Kuhn–Tucker function. Furthermore, we have

minP1 = maxP∗
1 = min

x∈X
max
y∗∈Y ∗ K(x,y∗) = max

y∗∈Y ∗ min
x∈X

K(x, y∗).

We observe that the condition of the saddle point can be explicitly rewritten as

min
x∈X

sup
y∗∈Y ∗

inf
y∈Y

{
f (x) − g(Ax − y) − (y, y∗)

}

= max
y∗∈Y ∗ inf

x∈X
inf
y∈Y

{
f (x) − g(Ax − y) − (y, y∗)

}

= max
y∗∈Y ∗ inf

(x,y)∈X×Y

{
f (x) − g(y) − (Ax − y, y∗)

}
.

Thus, it is natural to consider the problem of saddle points on (X × Y) × Y ∗ of the
Lagrangian

L (x, y;y∗) = f (x) − g(y) − (Ax − y, y∗), ∀(x, y) ∈ X × Y, y∗ ∈ Y ∗. (3.96)

It is easy to prove that a point (x0, y
∗
0 ) is a saddle point of H on X × Y ∗ if and only

if (x0,Ax0, y
∗
0 ) is a saddle point of L on (X × Y) × Y ∗. Now, if we take as the

perturbation function Fr : X × Y →R
∗
, r ∈ R, defined by

Fr(x, y) = f (x) − g(Ax − y) + 1

2
r‖y‖2 = F(x, y) + 1

2
r‖y‖2,

we obtain the Hamiltonian

Hr(x, y∗) = sup
{
(y, y∗) − Fr(x, y); y ∈ Y

}
.
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The corresponding Lagrangian

Lr (x, y;y∗) = L (x, y;y∗) + 1

2
r‖Ax − y‖2,

called the augmented Lagrangian, has the same saddle points as L . The Hamilto-
nian Hr and the corresponding Lagrangian Lr are differentiable with respect to y∗
for every r > 0. Thus, convenient algorithms in the finding of saddle points can be
given. A detailed treatment of the methods generated by augmented Lagrangian has
been given by Rockafellar [102].

3.2.3 Optimality Through Closedness

In this section, we characterize the global optimality of a family of optimalization
problems in terms of closedness. In this way, we can obtain various optimality con-
ditions using some criteria for closedness of the image of a closed set by a multi-
valued function (see Sect. 1.1.4).

Let us consider the following general family of minimization problems:

(Py) min
{
F(x, y); x ∈ X

}
, y ∈ Y,

where Y is a topological space and F : X × Y →R.
Let us denote by

h(y) = inf
{
F(x, y); x ∈ X

}
, y ∈ Y, (3.97)

and

H = {
(y, a) ∈ Y ×R; there exists x̄ ∈ X such that F(x̄, y) ≤ a

}
. (3.98)

Lemma 3.59 Problems (Py)y∈Y have optimal solutions, whenever h(y) is finite,
and the function h is lower-semicontinuous on Y if and only if the set H is closed in
Y ×R.

Proof Let a be a real number such that a > h(y). Then, there exists an element
xa ∈ X such that F(xa, y) ≤ a, that is (y, a) ∈ H . If H is closed, we also have

lim
a↘h(y)

(y, a) = (
y,h(y)

) ∈ H.

Therefore, from definition (3.98) of the set H , there exists x̄ ∈ X such that
F(x̄, y) ≤ h(y), which say that x̄ is an optimal solution for Py . On the other hand,
from definition (3.97) of the function h, it is easy to observe that we have the in-
clusion relation H ⊂ epih ⊂ H . Hence, if H is closed, it follows that h is lower-
semicontinuous on Y .
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Conversely, let (y, a) ∈ Y × R be a cluster element of H . Since h is lower-
semicontinuous, we have (y, a) ∈ H = epih = epih, and so h(y) ≤ a. Therefore,
h(y) < ∞. Now, if h(y) is finite, by hypothesis there exists an optimal solution
x1 ∈ X, that is, F(x1, y) = h(y). Hence, (y, a) ∈ H . If h(y) = −∞, by definition
of h there exist elements x ∈ X such that F(x, y) ≤ a, which says that (y, a) ∈ H .
Therefore, the set H is closed. �

Remark 3.60 This optimality result can be extended to the case of optimality only
for the elements of a subset A of Y . Indeed, from the proof it follows that the value
function h is lower-semicontinuous on A ⊂ Y and each problem Py has optimal
solutions, whenever y ∈ A and h(y) > −∞, if and only if

H ∩ (A ×R) = H ∩ (A ×R).

It is obvious that the set H given by (3.98) is a set of epigraph type, that is,
(x,λ′) ∈ H , whenever (x,λ) ∈ H and λ′ ≥ λ. Consequently, the closedness property
in H can by fulfilled if its section in Y and R, respectively, are closed sets. Let us
denote

Hy = {
a ∈R; (y, a) ∈ H

}
, (3.99)

Ha = {
y ∈ Y ; (y, a) ∈ H

}
. (3.100)

Thus, Lemma 3.59 can be refined as follows.

Lemma 3.61

(i) Problems (Py)y∈Y have optimal solutions whenever h(y) ∈ R if and only if
the sets Hy , y ∈ Y , are closed in R.

(ii) If the sets Ha , a ∈ R, are closed in Y , then the value function h is lower-
semicontinuous on the parameter space Y .

(iii) If the set Hy , y ∈ Y , are closed in R for every y ∈ Y and the value function h

is lower-semicontinuous on Y , then the set Ha , a ∈R, are closed in Y .
(iv) The set H is closed in Y ×R if and only if the sets Hy , y ∈ Y , and Ha , a ∈ R,

are closed in R and Y , respectively.
(v) If the function F has the property

y ∈ Hh(y) if h(y) is finite, (3.101)

then Problems (Py)y∈Y have optimal solutions whenever h(y) is finite and the
value function is lower-semicontinuous if and only if the sets Ha , a ∈ R, are
closed in Y .

Proof (i) We take Y = {y} if h(y) is finite and applies Lemma 3.59.
(ii) We have {y; h(y) ≤ a} = ⋂

ε>0 Ha+ε .
(iii) and (iv) follow from Lemma 3.59 by taking into account (i).
(v) By Lemma 3.59, optimality and lower-semicontinuity ensure that H is closed,

and so Ha is closed for every a ∈ R. Conversely, if Ha , a ∈ R, are closed, by (ii) h
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is lower-semicontinuous. Moreover, property (3.101) proves that y ∈ Hh(y), that is,
Py has optimal solutions if h(y) ∈ R. �

If the set H is also convex (this is possible even if F is not convex), the above
result can be restated as a duality result.

With that end in view, we consider the duals by conjugacy of Problems (Py)y∈Y ,
that is, the following maximization problems:

(Dy) max
{
(y, y∗) − F ∗(0, y∗); y∗ ∈ Y ∗}, y ∈ Y,

where (X,X∗), (Y,Y ∗) are two dual systems endowed with compatible topologies.
We observe that the family {Dy;y ∈ Y } coincides with the family of all the linear

perturbations of Fenchel–Rockafellar duals of Problem P0.
By an elementary calculation involving the definition of the conjugate of h, we

obtain

valDy = h∗∗(y), for all y ∈ Y. (3.102)

Lemma 3.62 Suppose that at least one of the problems (Py) has a finite value.
Then, valPy = valDy �= −∞, and Py has an optimal solution, for any y ∈ Y , if
and only if the set H is closed and convex.

Proof If H is closed and convex, by Lemma 3.59 it follows that h is convex and
lower-semicontinuous. On the other hand, according to Proposition 2.9, we have
h(y) �= −∞, ∀y ∈ Y . Thus, by the theorem of bipolar, Lemma 3.59 and the equality
(3.102), it follows that valPy = h(y) = h∗∗(y) = valDy �= −∞ and Py has an
optimal solution. Conversely, if valPy = valDy , for all y ∈ Y , we obtain h = h∗∗,
that is, h is convex and lower-semicontinuous. By Lemma 3.59, it follows that the
set H is closed. Moreover, the equality H = epih implies the convexity of H . �

Remark 3.63 The above result gives a characterization of the global stability of the
family (Dy)y∈Y . Now, if we apply Lemma 3.62 for Problems P and P∗ considered
in the preceding section (the hypothesis (A) being satisfied), we easily obtain the
sufficient stability conditions: P∗ has a finite value and the set

H ∗ = {
(x∗, a) ∈ X∗ ×R; there exists ȳ∗ ∈ Y ∗ such that F ∗(x∗, ȳ∗) ≤ a

}

is closed in X∗ ∈R.

At the same time, this constitutes a sufficient subdifferentiability condition for
the function h at the origin (see Theorem 3.48).

Theorem 3.64 Let F : X × Y → R be a positively homogeneous and lower-
semicontinuous function satisfying the following coercivity condition:

F(x,0) > 0 for any x ∈ X \ {0}. (3.103)
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Then, if epiF is locally compact, every Problem Py has an optimal solution when-
ever its value is finite.

Proof It is easy to observe that H = ProjY×R(epiF). By hypothesis, epih is a
closed cone and so (epiF)∞ = epiF . Therefore, it suffices to use Corollary 1.60
for T = ProjY×R and A = epiF , taking into account that the separation condition
(1.41) of Corollary 1.60 may be written as condition (3.103). �

Remark 3.65 We can omit the condition that F is positively homogeneous, by using
the recession function associated to F , which is defined by

F∞(x, y) = sup
ε>0

lim inf[u,v]→[x,y] inf
0≤λ≤ε

λF

(
u

λ
,v

λ

)
, ∀[x, y] ∈ X × Y.

It is clear that F∞ is positively homogeneous and lower-semicontinuous. We
also have

F∞(x,0) > 0 for any x ∈ X \ {0} (3.104)

and epiF must be asymptotically compact. For example, the last property holds if
there exists s > 0 such that the origin of X × Y has a relatively compact neighbor-
hood in the induced topology of X × Y on the set

{

(x, y) ∈ X × Y ; inf
0≤λ≤s

λF

(
x

λ
, y

λ

)

≤ s

}

.

(For details, see Precupanu [86].)
Next, consider the family of Fenchel–Rockafellar problems

(Py) min
{
f (x) − g(Ax + y); x ∈ X

}
, y ∈ Y,

where f and −g are two proper lower-semicontinuous functions on X and Y , re-
spectively, and A : X → Y is a linear continuous operator.

In this case, the set H and the dual problems can be written as

H = {(
Ax − y,f (x) − g(y) + r

) ∈ Y ×R; x ∈ Dom(f ), y ∈ Dom(g), r ≥ 0
}
,

(3.105)

(Dy) max
{
g∗(y∗) − f ∗(A∗y∗) + (y, y∗); y∗ ∈ Y ∗}, y ∈ Y.

If we consider the associated operator Ã : X ×R→ Y ×R defined by

Ã(x, t) = (Ax, t) for all (x, t) ∈ X ×R, (3.106)

then the set H can be rewritten in the simple form

H = Ã(epif ) − hypog. (3.107)
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Theorem 3.66 If Py has a finite value at least an element of Y , then

min
{
f (x) − g(Ax + y); x ∈ X

} = sup
{
g∗(y∗) − f ∗(A∗y∗) + (y, y∗); y∗ ∈ Y ∗},

whenever valPy is finite, if and only if H is closed and convex.

Proof Apply Lemma 3.62. �

Corollary 3.67 If f , −g are proper convex and lower-semicontinuous and P0 is
consistent, then

inf
{
f (x) − g(Ax) − (x, x∗); x ∈ X

}

= max
{
g∗(y∗) − f ∗(A∗y∗ + x∗); y∗ ∈ Y ∗}, x∗ ∈ X∗,

whenever the left-hand side is finite, if and only if the set

H ∗ = {(
A∗y∗ − x∗, f ∗(x∗) − g∗(y∗) + r

) ∈ X∗ ×R;
x∗ ∈ Dom(f ∗), y∗ ∈ Dom(g∗), r ≥ 0

}
(3.108)

is closed in X∗ ×R.

Proof Take −g∗,−f ∗,A∗ instead of f,g,A, respectively. Thus, the corresponding
set of H is even H ∗. It is clear that H ∗ is always convex. As initial family we
consider

(
P̃x∗

)
min

{−g∗(y∗) + f ∗(A∗y∗ + x∗); y∗ ∈ Y
}

and so, as dual family (according to the theorem of bipolar), we have
(
D̃x∗

)
max

{−f (x) + g(Ax) + (x, x∗); x ∈ X
}
.

Also, it is clear that valP̃0 �= −∞ if P0 is consistent since −P̃0 is the dual of P0;
hence, −valP̃0 ≤ valP0 �= ∞. The proof is complete. �

Here, the similar form of formula (3.107) is

H∗ = Ã∗(epi(−g∗)
) − hypo(−f ∗).

Obviously, this set can be, equivalently, replaced by the set

H̃ ∗ = epif ∗ − Ã(hypog∗). (3.109)

Remark 3.68 If the two functions f,g are arbitrary, then by Lemma 3.59 we obtain
the following result. The associated Fenchel–Rockafellar problems Py , y ∈ Y , have
optimal solutions whenever h(y) is finite and h is lower-semicontinuous on Y if and
only if the set (3.105) is closed. Here, we admit that ∞ + a = ∞ for all a ∈ R. If,
in addition, the set (3.105) is convex, then the duality properties from Lemma 3.61
hold.
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If A is the identity operator, it is clear that

H = epif − hypog, (3.110)

H̃ ∗ = epif ∗ − hypog∗. (3.111)

Thus, we obtain the following result of Fenchel–Rockafellar type.

Corollary 3.69 If P0 or D0 has a finite value and epif ∗ − hypog∗ is closed in
X∗ ×R, then P0 is stable, that is,

inf
{
f (x) − g(x); x ∈ X

} = max
{
g∗(x∗) − f ∗(x∗); x∗ ∈ X∗}.

It is easy to observe that the set H defined by (3.105) can be decomposed into a
difference of two sets in various forms. From this, we consider the following four
cases:

H = Mi − Ni, i = 1,2,3,4, (3.112)

where

M1 = {(
Ax,f (x) + r

); x ∈ Dom(f ), r ≥ 0
}
,

N1 = {(
y,g(y)

); y ∈ Dom(g)
}
,

(3.113)

M2 = {(
Ax,f (x) + r

); x ∈ Dom(f )
}
,

N2 = {(
y,g(y) − r

); y ∈ Dom(g), r ≥ 0
}
,

(3.114)

M3 = M1, N3 = N2, (3.115)

M4 = {(
Ax − y,f (x) − g(x)

); x ∈ Dom(f ), y ∈ Dom(g)
}
,

N4 = {0} ×R−.
(3.116)

If f an d g are arbitrary functions, the above sets can be non-closed and non-
convex (except the set N4 which is a closed convex cone). We observe that

N1 = graphg, N2 = hypog, M4 = M2 − N1,

and

M1 = Ã(epif ), M2 = Ã(graphf ). (3.117)

Thus, the four decompositions can be rewritten as follows:

H = Ã(epif ) − graphg, (3.118)

H = Ã(graphf ) − hypog, (3.119)

H = Ã(epif ) − hypog, (3.120)

H = Ã(graphf ) − graphg − {0} ×R−. (3.121)
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Now, we can obtain closedness conditions for the set H if (epif )∞ (or
(graphf )∞, (epig)∞, (graphg)∞) is asymptotically compact using Theorem 1.59
or Corollary 1.60. Thus, in the special case of positively homogeneous functions,
the separation condition (1.41) from Theorem 1.59 for the decompositions (3.118)–
(3.120) is the same, namely,

(c) f (x) ≤ g(Ax) implies x = 0,

and the separation condition (1.42) from Corollary 1.60 becomes:

(c1) f (x) ≤ g(Ax) implies Ax = 0 (for (3.118))
(c2) f (x) ≤ g(Ax) implies Ax = 0 and f (x) = 0 (for (3.119) and (3.120))
(c3) f (x) ≤ g(Ax) implies f (x) = g(Ax) (for (3.121)).

Theorem 3.70 Let f , −g be proper positively homogeneous functions. Each of the
following properties is sufficient for the closedness of the set H :

(i) Ã(epif ) is a locally compact and either g has closed graph and (c1) holds or
g is upper-semicontinuous and (c2) holds.

(ii) epif is locally compact, condition (c) is satisfied and g is either upper-
semicontinuous or has closed graph.

(iii) Ã(graphf ) − graphg is closed and (c3) holds.
(iv) graphg is locally compact, (c1) is satisfied and Ã(epif ) is closed.
(v) hypog is locally compact, (c2) is satisfied and Ã(epif ) or Ã(graphf ) is

closed.

Proof The sufficiency of properties (i), (iii), (iv) and (v) follows using Corol-
lary 1.60. To obtain (ii), we apply Theorem 1.59. In fact, according to Corol-
lary 1.60, condition (ii) is stronger than condition (i). �

Remark 3.71 If graphf is locally compact, then epif is also locally compact since
epif = graphf + {0} ×R+. If graphf is closed, the converse is also true.

The local compactness conditions can be ensured by dual interiority conditions
taking into account that a closed cone is locally compact if the interior of polar cone
is nonvoid, with respect to Mackey topology.

In the sequel, we consider the homogeneous program

min
{
a(x); x ∈ P, Ax + y ∈ Q

}
, y ∈ Y, (3.122)

where a : X → ]−∞,+∞] is a positively homogeneous lower-semicontinuous
function, A : X → Y is a linear continuous operator, y is a fixed element of Y and
P ⊂ X, Q ⊂ Y are closed cones.

This minimization problem is of Py type for

f = a + IP , g = −IQ,
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and so, as dual problem we have

(D ′
y) max

{〈y, y∗〉; y∗ ∈ Q0, A∗y∗ ∈ ∂(a + IP )(0)
}
, y ∈ Y. (3.123)

Here, the set H defined by (3.123) is

H = {(
Ax − y, a(x) + r

); x ∈ P ∩ Dom(a), y ∈ Q, r ≥ 0
}
.

The coercivity conditions (c1), i = 1,2,3, and (c) become:

(c0
1) If x ∈ P ∩ A−1(Q) and a(x) ≤ 0, then Ax = 0

(c0
2) If x ∈ P ∩ A−1(Q) and a(x) ≤ 0, then Ax = 0 and a(x) = 0

(c0
3) If x ∈ P ∩ A−1(Q) and a(x) ≤ 0, then a(x) = 0

(c0) If x ∈ P ∩ A−1(Q) and a(x) ≤ 0, then x = 0.

We also have

epif = epia|P ; graphf = grapha|P , (3.124)

hypog = Q ×R−; graphg = Q × {0}, (3.125)

where we denote by a|P the restriction of a to P ∩ Dom(a).
By Theorem 3.70, we obtain the following result.

Theorem 3.72 The homogeneous program (3.122) has an optimal solution for ev-
ery y ∈ Y , whenever its value is finite, if one of the following conditions holds:

(i) Ã(epia|P ) is locally compact and (c0
1) is satisfied

(ii) Ã(grapha|P ) − Q × {0} is closed and (c0
3) is satisfied

(iii) Q is locally compact, Ã(epia|P ) is closed and (c0
1) is satisfied

(iv) Q is locally compact, Ã(grapha|P ) is closed and (c0
2) is satisfied.

The local compactness and closedness of Ã(epia|P ) and Ã(grapha|P ) which
appear in the above conditions can be derived by Corollaries 1.60 and 1.61, by using
the coercivity conditions (c0). Thus, for example, if epia|P or grapha|P is locally
compact and (c0) is fulfilled, then (i) holds. Also, it is sufficient that P ∩ Dom(a) to
be locally compact and grapha|P to be closed since Ã(grapha|P ) = (A × a)(P ∩
Dom(a)).

In the linear case, a ∈ X∗, all these conditions have a more simple form since
∂(a + IP )(0) = a + P 0. Let us remark that the linear case is not different from
the positively homogeneous case because every positively homogeneous program
can be reduced to a linear program. Indeed, the positively homogeneous program
(3.122) is equivalent to

min
{
t; (x, t) ∈ epia, x ∈ P, Ax + y ∈ Q

}
. (3.126)

This program is linear and of the same type as (3.122), where X, Y , A, P , Q

are replaced by X × R, Y , A1, (epia) ∩ (P × R), Q, respectively, with the op-
erator A1 : X × R → Y defined by A1(x, t) = Ax, for all (x, t) ∈ X × R. Since



192 3 Convex Programming

A∗
1y

∗ = (A∗y∗,0) ∈ X∗ × R, for all y∗ ∈ Y ∗, ((epia) ∩ (P × R))0 = P 0 × {0} ∪
cone(∂a|P (0) × {−1} and the cost functional of problem (3.126) can be identified
with (0,1) ∈ X∗ ×R, the duals of problems (3.122) and (3.126) are the same.

Finally, we remark that Theorem 3.72 can be completed as a dual result, that is,
programs (3.122) and (3.123) have equal values if the set H is also convex.

3.2.4 Non-convex Optimization and the Ekeland Variational
Principle

As seen earlier, the central problem of the topics discussed so far is the minimization
problem

Min
{
f (x); x ∈ M

}
, (3.127)

where f : X → R is a given lower-semicontinuous function on a Banach space
X and M is a closed subset of X. By the Weierstrass theorem, a sufficient con-
dition for existence of a minimum in (3.127) is that M be compact and f lower-
semicontinuous with respect to a certain topology on X, for instance, the weak
topology of X, and the latter holds if f is convex, lower-semicontinuous and M

is bounded.
If these conditions are absent, one cannot prove the existence in problem (3.128).

A second important question related to problem (3.128) is to find the minimum
points (if any) by a first order condition

∂f (x) � 0, (3.128)

where ∂f is the gradient of f in some generalized sense.
The Ekeland variational principle [37, 38] to be briefly presented below is a sharp

instrument to give a partial answer to these questions.

Theorem 3.73 Let X be a complete metric space and let f : X → (−∞,+∞] be
a lower-semicontinuous function, nonidentically +∞ and bounded from below. Let
ε > 0 be arbitrary and let x ∈ X be such that

f (x) ≥ inf
{
f (u); u ∈ X

} + ε.

Then, there exists xε ∈ X such that

f (xε) ≤ f (x), d(xε, x) ≤ 1,

f (u) > f (xε) − εd(xε, u), ∀u �= xε.
(3.129)

Here, d : X × X → R is the distance on X.

Proof We take x0 = x and define inductively the sequence {xn} as follows.
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If xn−1 is known, then either

f (u) > f (xn−1) − εd(xn−1, u), ∀u �= xn−1, (3.130)

and, in this case, take xn = xn−1, or there exists u �= xn−1 such that

f (u) ≤ f (xn−1) − εd(xn−1, u). (3.131)

In the latter case, denote by Sn the set of all u ∈ X satisfying (3.131) and choose
xn ∈ Sn such that

f (xn) − inf
{
f (u); u ∈ Sn

} ≤ 1

2

(
f (xn−1) − inf

{
f (u); u ∈ Sn

})
.

We prove that the sequence {xn} so defined is convergent. If (3.130) happens for
all n, then {xn} is stationary; otherwise, it follows by (3.131) that

d(xn−1, xn) ≤ f (xn−1) − f (xn)

and, therefore,

εd(xn−1, xm) ≤ f (xn−1) − f (xm), ∀m ≥ n − 1. (3.132)

The sequence {f (xn)} is bounded from below and monotonically decreasing.
Hence, {f (xn)} is convergent and, by (3.132), it follows that so is {xn}. Hence,

limn→∞ xn = xε exists. We have

f (x) ≥ f (x1) ≥ · · · ≥ f (xn−1) ≥ f (xn) ≥ · · ·
and we may conclude that

f (x) ≥ lim
n→∞f (xn) = � ≥ f (xε),

because f is lower-semicontinuous. We get

d(x, xm) ≤ f (x) − f (xm) ≤ f (x) − inf
{
f (u); u ∈ X

} ≤ ε.

Then, letting n tend to +∞, we get d(xε, x) ≤ 1. To prove the last relation, we
assume that there exists u �= xε such that

f (u) ≤ f (xε) − εd(xε, u)

and we argue from this to a contradiction. Since f (xε) ≤ f (xn−1) for all n, the latter
yields

f (u) ≤ f (xn−1) − εd(xε, u) + εd(xε, xn−1) ≤ f (xn−1) − εd(xn−1, u).

Hence, u ∈ Sn for all n. On the other hand, we have

2f (xn) − f (xn−1) ≤ inf
{
f (v); v ∈ Sn

} ≤ f (u).



194 3 Convex Programming

Hence, f (u) ≥ � ≥ f (xε). The contradiction we arrived at proves the desired rela-
tion. �

Corollary 3.74 Let X be a complete metric space and let f : X → (−∞,+∞] be
a lower-semicontinuous which is bounded from below and �≡ +∞. Let ε > 0 and
x ∈ X be such that

f (x) ≤ inf
{
f (u); u ∈ X

} + ε.

Then, there exists xε ∈ X such that

f (xε) ≤ f (x), d(xε, x) ≤ ε
1
2 , f (xε) < f (u) + ε

1
2 d(xε, u), ∀u �= xε.

Proof One applies Theorem 3.73 on the space X endowed with the metric ε
1
2 d . �

In the special case, where X is a Banach space and f is Gâteaux differentiable,
we have

Corollary 3.75 Let X be a Banach space and let f : X → R be Gâteaux differen-
tiable and bounded from below. Then, for each ε > 0, there exists xε such that

f (xε) ≤ inf
{
f (u); u ∈ X

} + ε,
∥
∥∇f (xε)

∥
∥ ≤ √

ε.

Proof It suffices to take in (3.129) u = xε ± λh, divide by λ and let λ go to zero. �

Corollary 3.76 Let f : X → R be Gâteaux differentiable and bounded from below
on the Banach space X. If f satisfies the Palais–Smale condition, then it attains its
infimum on X.

Proof We recall that a Gâteaux differentiable function f on X is said to satisfy the
Palais–Smale condition if every sequence {xn} ⊂ X such that limn→∞ f (xn) exists,
and limn→∞ ∇f (xn) = 0 contains a convergent subsequence.

Now, let {xn} ⊂ X be such that

f (xn) ≤ inf
{
f (u); u ∈ X

} + n−1,

∥
∥∇f (xn)

∥
∥ ≤ n− 1

2 .

Then, there exists {xnk
} ⊂ {xn} such that limnk→∞ xnk

= x. Clearly, f (x) =
inf{f (u); u ∈ X}, as claimed. �

The Ekeland variational principle may also be viewed as an existence result for
an approximating minimum point of a lower-semicontinuous bounded from below
function. Indeed, by Corollary 3.74, we have

x = arg inf
{
f (u) + ε

1
2 d(xε, u); u ∈ X

}
.

On these lines, a sharper result was established by Stegall [108].
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Theorem 3.77 Let M be convex, weakly compact subset of a Banach space X and
let f : M → R be a lower-semicontinuous function which is bounded from below.
Then, for every ε > 0, there exists wε ∈ X∗, ‖wε‖ ≤ ε, such that the function x →
f (x) + (x,wε) attains its infimum on K .

In particular, if the space X is reflexive, then we may take in Theorem 3.77 any
convex, closed and bounded subset M of X.

We omit the proof.

3.2.5 Examples

In this section, we illustrate the general results by discussing some specific examples
of optimization problems associated with partial differential equations, stress being
laid on the formulation as well as on the explicit determination of the dual problem
and of the optimality conditions.

Example 3.78 Here and throughout in the sequel, we denote by Ω a bounded open
domain of Rn with the boundary Γ , an (n − 1)-dimensional variety of class C∞.

Consider the problem

min

{
1

2

∫

Ω

|gradu|2 dx −
∫

Ω

hudx; u ∈ K

}

, (3.133)

when h ∈ L2(Ω) and K = {u ∈ H 1
0 (Ω);u ≥ 0 a.e. on Ω}.

Let us take in the Frenchel duality theorem (see Theorem 3.54) X = H 1
0 (Ω),

X∗ = H−1(Ω), g = −IK (the indicator function of the set K) and

f (u) = 1

2

∫

Ω

|gradu|2 dx −
∫

Ω

hudx, u ∈ H 1
0 (Ω).

In other words, f (u) = 1
2‖u‖2

H 1
0 (Ω)

− (h,u), where (·, ·) denotes the duality bili-

near functional between H 1
0 (Ω) and its dual H−1(Ω) (respectively, the inner prod-

uct in L2(Ω)).
Thus, we have

f ∗(p∗) = sup

{

(p∗, u) − 1

2
‖u‖2 + (h,u); u ∈ H 1

0 (Ω)

}

= sup

{

(p∗ + h,u) − 1

2
‖u‖2; u ∈ H 1

0 (Ω)

}

= 1

2
‖p∗ + h‖2

H−1(Ω)
.

On the other hand,

g∗(p∗) = inf
{
(u,p∗); u ∈ K

} =
{

0, if p∗ ∈ K∗,
−∞, if p∗∈K∗,
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where K∗ = {p∗ ∈ H−1(Ω); (p∗, u) ≥ 0, ∀u ∈ K} = {p∗ ∈ H−1(Ω);p∗ ≥ 0}. We
note that the relation p∗ ≥ 0 must be understood in the same sense of distributions.

We also remark that −K∗ is just the polar cone associated to the cone K . There-
fore, the dual problem associated to problem (3.133) can be written as

max

{

−1

2
‖p∗ + h‖2

H−1(Ω)
; p∗ ∈ H−1(Ω), p∗ ≥ 0

}

; (3.134)

hence, we have the equality

inf
1

2

{∫

Ω

|gradu|2 dx −
∫

Ω

hudx; u ∈ K

}

= − inf

{
1

2
‖p∗ + h‖2

H−1(Ω)
; p∗ ∈ K∗

}

. (3.135)

Since the function f is coercive and strictly convex, problem (3.133) admits a
unique solution ū ∈ K . Similarly, problem (3.134) admits a unique solution p̄∗ ∈
K∗. Since the Hamiltonian function H(u,p∗) associated with our problem is given
by

H(u,p∗) = sup
v∈K

{−(p∗, v) − f (u) + (p∗, u)
} = IK∗(p∗) + (p∗, u) − f (u),

we may infer (see Theorem 3.53) that the pair (ū, p̄∗) verifies the optimality system

p̄∗ ∈ ∂f (ū), p̄∗ + ∂IK(ū) � 0.

Hence,

−Δū = h + p̄∗ on Ω,

p̄∗ + ∂IK(ū) � 0.
(3.136)

From the definition of ∂IK , it follows that p̄∗ = 0 on the set {x ∈ Ω; ū(x) > 0}, and
p̄∗ ≥ 0 on the complementary set.

Problem 3.136 can be restated as

−Δū ≥ h on Ω,

−Δū = h on
{
x ∈ Ω; ū(x) > 0

}
,

ū ≥ 0 on Ω, ū = 0 on Γ.

(3.137)

We have, therefore, obtained a free boundary-value problem studied in Chap. 2 (the
obstacle problem).

Example 3.79 This example deals with an abstract control problem.
Let V,H be a pair of real Hilbert spaces such that V is dense in H and the

injection of V in H is continuous. In other words, if we denote by V ′ the dual of V ,
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we have

V ⊂ H ⊂ V ′

which is meant both in the algebraic and the topological sense.
We denote by ‖ · ‖ and | · | the norm in V , and in H , respectively, and by ‖ · ‖∗

the norm in V ′. We denote also by (·, ·) the duality bilinear functional between V

and V ′ (the inner product in H , respectively).
Let U be another real Hilbert space and let B be a continuous linear operator

from U to V ′. Finally, let A ∈ L(V,V ′) be a continuous linear operator subject to

(Au,u) ≥ ω‖u‖2, ∀u ∈ V, (3.138)

where ω > 0.
Consider the optimization problem

(P) Minimize the function

1

2
‖y − y0‖2 + ϕ(u) (3.139)

on the set of all points y ∈ V , u ∈ U , which satisfy the equation

Ay − Bu = 0. (3.140)

Here, ϕ is a lower-semicontinuous convex function from U to ]−∞,+∞] and y0 is
a fixed element of V .

The above problem, which was not formulated in the most general framework,
represents a typical example of control problem. The parameter u is called control,
while the solution y is called state.

Since relation (3.138) implies A−1 ∈ L(V ′,V ), Problem P can be expressed as

min

{

ϕ(u) + 1

2

∥
∥A−1Bu − y0

∥
∥2; u ∈ U

}

. (3.141)

Denote g(y) = − 1
2‖y − y0‖2. Then, problem (3.141) becomes

inf
{
ϕ(u) − g

(
A−1Bu

); u ∈ U
}

and the associated dual problem can be written as

max

{

(y0, y
∗) − 1

2
‖y∗‖2∗ − ϕ∗(B∗(A∗)−1y∗); y∗ ∈ V ′

}

. (3.142)

If we write p = (A∗)−1y∗, then it is obvious that the dual problem (3.142) may
be also regarded as an optimal control problem. Thus, we are confronted with the
following problem.
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(P∗) Maximize the function

−ϕ∗(B∗p) − 1

2
‖y∗‖2∗ + (y0, y

∗) (3.143)

on the set of all pairs of points p ∈ V and y∗ ∈ V ′ which satisfy the equation

A∗p = y∗. (3.144)

By virtue of the same theorem, the pair (ū, ȳ∗) is optimal if and only if the system
(
A−1B

)∗
ȳ∗ ∈ ∂ϕ(ū), ȳ∗ ∈ ∂g

(
A−1Bū

)

is verified, that is,

B∗p̄ ∈ ∂ϕ(ū), ȳ∗ + JA−1Bū = −Jy0,

where J : V → V ′ is the canonical isomorphism from V into V ′.
Consequently, (ȳ, ū) is an optimal solution of the problem and (p̄, ȳ∗) is an op-

timal solution of the dual problem if and only if the system

Aȳ = Bū, A∗p̄ = ȳ∗,

B∗p̄ ∈ ∂ϕ(ū), ȳ∗ + J ȳ + Jy0 = 0,
(3.145)

is verified.
At the same time, we note that system (3.145) allows an explicit calculation of

the optimal controls ū and ȳ∗ with respect to the primal optimal state ȳ and the
adjoint state p̄.

The previous statements will be illustrated by the following example:

Minimize the functional

1

2

(∫

Ω

∣
∣grad(y − y0)

∣
∣2

dx +
∫

Ω

|u|2 dx

)

(3.146)

on the class of all functions y ∈ H 1
0 (Ω) and u ∈ K = {u ∈ L2(Ω), u ≥ 0, a.e., on

Ω} which verify the equation

−Δy on Ω,

y = 0 on Γ.
(3.147)

Here y0 is a given function in H 1
0 (Ω).

This problem may be written as a problem of type P by taking

V = H 1
0 (Ω), H = L2(Ω), U = L2(Ω), B = I, A = −Δ,

and

ϕ(u) = 1

2

∫

Ω

|u|2 dx + IK(u), u ∈ L2(Ω),
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where IK is the indicator function of the convex cone K . It is clear that the conjugate
function ϕ∗ is defined by

ϕ∗(u) = (u,PKu) − 1

2
|PKu|2,

where PKu = (I + IK)−1u, u ∈ L2(Ω) is the projection operator in L2(Ω) on the
set K . In other words,

PKu(x) = max
{
0, u(x)

} = u+(x), a.e. on Ω.

Then, the dual problem can be written as

min
1

2
‖v∗‖2

H−1(Ω)
− (v∗, y0) + 1

2

∫

Ω

|p+|2 dx,

where v∗ ∈ H−1(Ω) and p ∈ H 1
0 (Ω) satisfy the equation

−Δp = v∗ on Ω,

p = 0 on Γ.

In our case, the optimality system associated with Problem P becomes

Δȳ + ū = 0, Δp̄ + v̄∗ = 0 on Ω,

ȳ + p̄ = 0, ū = p̄+ on Ω,

v̄∗ − Δȳ − Δy0 = 0 on Ω,

(3.148)

or, equivalently,

Δȳ + p̄+ = 0, on Ω,

Δp̄ − p̄+ + Δy0 = 0 on Ω,

p̄ = ȳ = 0 on Γ.

The optimal controls ū and v̄∗ are defined by

ū = p̄+ = max(0, p̄), v̄∗ = Δy0 − p̄+.

Like problem (3.142), the latter is a unilateral elliptic problem of the same type
as that previously studied in Sect. 2.2.5.

Example 3.80 Consider now the problem

min
u∈H 1

0 (Ω)

{
1

2

∫

Ω

|gradu|2 dx +
∫

Ω

|gradu|dx −
∫

Ω

hudx

}

, (3.149)

where the function h ∈ L2(Ω) is given. Problem (3.149) arises in the study of the
nonnewtonian fluids and in other problems of physical interest (see Duvaut and
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Lions [35]). To construct the dual problem, we apply Theorem 3.53 in which X =
H 1

0 (Ω), X∗ = H−1(Ω), Y = (L2(Ω))n

Au =
(

∂u

∂x1
, . . . ,

∂u

∂xn

)

= gradu,

f (u) = 1

2

∫

Ω

|gradu|2 dx −
∫

Ω

hudx

and g : (L2(Ω))n → ]−∞,+∞[ is defined by

g(y) = −
∫

Ω

|y|dx, y = (y1, . . . , yn).

Then, we obtain (see Example 3.78)

f ∗(p∗) = 1

2
‖p∗ + h‖2

H−1(Ω)
, p∗ ∈ H−1(Ω),

g∗(y∗) = inf

{∫

Ω

(
(y∗, y) + |y|)dx; y ∈ (

L2(Ω)
)n

}

,

where y∗ ∈ (L2(Ω))n. Thereby, we obtain

g∗(y∗) =
{

0, if |y∗(x)| ≤ 1, a.e. on Ω,

−∞, otherwise.

Hence, the dual problem associated with problem (3.149) is

sup

{

−1

2
‖h − divp∗‖2

H−1(Ω)
; p∗ ∈ (

L2(Ω)
)n

, |p∗| ≤ 1, a.e. on Ω

}

. (3.150)

Now, let us find the optimality system. Using again Theorem 3.53, it follows that
(ū, p̄∗) ∈ H 1

0 (Ω) × (L2(Ω))n is an optimal pair for problem (3.149), respectively,
for its dual (3.150) if and only if

A∗p̄∗ ∈ ∂f (ū), p̄∗ ∈ ∂g(Aū). (3.151)

On the other hand, we have

∂f (u) = −Δū − h,

A∗p̄∗ = −
n∑

i=1

∂

∂xi

p̄∗
i , p̄∗ = (p̄∗

1 , . . . , p̄∗).

Then, the first equation of relation (3.151) can be written as

−Δū +
n∑

i=1

∂

∂xi

p̄∗
i = h on Ω.
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From the second equation of relation (3.151), it follows that
∫

Ω

p̄∗(grad ū − v)dx ≤
∫

Ω

(|v| − |grad ū|)dx, ∀v ∈ (
L2(Ω)

)n
.

Hence,
∫

Ω

(
p̄∗ grad ū + |grad ū|)dx ≤

∫

Ω

(|v| + p̄∗v
)

dx.

Since v is arbitrarily chosen in (L2(Ω))n and

|p̄∗| =
(

n∑

i=1

|p̄∗
i |2

) 1
2

≤ 1
(
because p̄∗ ∈ Dom(g∗)

)

the above inequality implies

p̄∗ grad ū + |grad ū| = 0, a.e. in Ω.

Consequently, ū is a solution of problem (3.149) and p̄∗ is a solution of the dual
problem (3.150) if and only if they verify the system

−Δū + div p̄∗ = h on Ω,
n∑

i=1

p̄∗
i

∂ū

∂xi

+ |grad ū| = 0 a.e. on Ω,

ū = 0 on Γ,

p̄∗ ∈ (
L2(Ω)

)n
and

n∑

i=1

|p̄∗
i |2 ≤ 1 a.e. on Ω.

It is interesting to note that the system p̄∗ = (p̄∗
1 , . . . , p̄∗

n) ∈ (L2(Ω))n can be
regarded as a system of Lagrange multipliers for problem (3.149).

Example 3.81 Detection filter problem (Fortmann, Athans [42]). This problem can
be expressed as the following maximization problem:

max
{〈u,x〉 : u ∈ L2[0, T ]} subject to

〈u, st 〉 ≤ ε〈u, s〉, δ ≤ |t | ≤ T ,

−〈u, st 〉 ≤ ε〈u, s〉, δ ≤ |t | ≤ T ,

‖u‖ ≤ 1,

(3.152)

where s is the signal function.
Suppose that s : R → R is continuous with supp s ⊂ [0, T ] and

‖s‖2 =
∫ ∞

−∞
s2(t)dt =

∫ T

0
s2(t)dt = 1, (3.153)

that is, the energy of s equals 1.
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Problem (3.152) can be considered as a problem of type P2 (see Sect. 3.1.2)
by taking X = A = L2[0, T ], f (u) = −〈u, s〉, Y = C[−T ,T ] × C[−T ,T ] × R

and G = (G1,G2,G3) : X → Y defined by (Giu)(t) = −(−1)i〈u, st 〉 − ε〈u, s〉,
t ∈ [−T ,T ], i = 1,2, and G3u = ‖u‖2 − 1.

Now, it suffices to consider the cone AY = C−[−T ,T ]×C−[−T ,T ]×R, where
C−[−T ,T ] = {x ∈ C[−T ,T ]; x(t) ≤ 0, δ ≤ |t | ≤ T }.

It is clear that problem (3.152) has a unique optimal solution since the unit ball
of a Hilbert space is weakly compact and its indicator function is strictly convex.
If we suppose that the Slater condition holds, that is, there exists u ∈ L2[−T ,T ]
such that G(u) ∈ intAY , then there exists the Lagrange multiplier y∗

0 = (p0
1,p

0
2,p

0
3).

Here, p0
1,p

0
2 are positive regular Borel measures on [−T ,T ] which are equal to zero

on (−δ, δ) and p0
3 ∈ R+. Therefore, if u0 ∈ L2[−T ,T ] is the optimal solution of

Problem (3.152), then the Kuhn–Tucker conditions become: u0 minimizes

L
(
u;p0

1,p
0
2,p

0
3

) = −〈u, s〉 +
∫ T

−T

[〈u, st 〉 − ε〈u, s〉]dp0
1

+
∫ T

−T

[−〈u, st 〉 − ε〈u, s〉]d0
2 + p0

3

[‖u‖2 − 1
]

on L2[−T ,T ], (3.154)

p0
1G1

(
u0) =

∫ T

−T

[〈
u0, st

〉 − ε
〈
u0, s

〉]
dp0

1 = 0,

p0
2G2

(
u0) =

∫ T

−T

[−〈
u0, st

〉 − ε
〈
u0, s

〉]
dp0

2 = 0, (3.155)

p0
3G3

(
u0) = p0

3

[∥∥u0
∥
∥2 − 1

] = 0.

It is easily seen that p0
3 > 0, hence ‖u0‖ = 1.

Also, (u0,p0) is a saddle point of the Lagrangian. We note that the Lagrangian
can be written as

L(u;p1,p2,p3) = −〈
u, û(p1,p2)

〉 + p3
(‖u‖2 − 1

)
,

where û(p1,p2) ∈ L2[0, T ] is defined by

û(p1,p2) = s +
∫ T

−T

(−st + εs)dp1 +
∫ T

−T

(st + εs)dp2

= s
[
1 + ε

(‖p1‖ + ‖p2‖
)] −

∫ T

−T

st dp1 +
∫ T

−T

st dp2.
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Thus, we have

L(u;p1,p2,p3) = p3

∥
∥
∥
∥u − 1

2p3
û(p1,p2)

∥
∥
∥
∥

2

− 1

4p3

∥
∥û(p1,p2)

∥
∥2 − p3.

Using the minimax duality generated by the Lagrangian, let us find now the dual
problem of (3.152).

Since u = 1
2p3

û(p1,p2) minimizes L, we obtain (see Sect. 3.2.3) the following
dual problem:

max

{

−p3 − 1

4p3

∥
∥û(p1,p2)

∥
∥2; p1 ≥ 0, p2 ≥ 0, p3 > 0

}

. (3.156)

Hence, the derivative with respect to p3 must be equal to zero

−1 + ‖û(p1,p2)‖2

4p2
3

= 0,

that is,

p0
3(p1,p2) = 1

2
‖û(p1,p2)‖.

Therefore, the dual problem (3.156) becomes

min
∥
∥û(p1,p2)

∥
∥2; p1,p2 ∈ M0[−T ,T ],

where M0[−T ,T ] is the space of all regular Borel measures which are zero on
(−δ, δ).

Since the constraints are not simultaneously active, the measures p1,p2 are mu-
tually singular. Taking p = p1 − p2, we have

û(p1,p2) = û(p) = s + εs‖p‖ −
∫ T

−T

st dp.

Thus, we obtain the following final form for the dual problem:

min
{∥
∥û(p)

∥
∥2; p ∈ M0[−T ,T ]}.

3.3 Applications of the Duality Theory

We discuss below a few applications of the duality theory on some specific convex
optimization problems.
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3.3.1 Linear Programming

Let b ∈ R
n and c ∈ R

m be fixed and let A : Rn → R
m be a linear operator. Denote

by 〈·, ·〉n and 〈·, ·〉m the usual inner products in R
n and R

m, respectively.
The basic problem of the finite-dimensional linear programming can be ex-

pressed as

(Pc) min
{〈x, b〉n; x ∈R

n, x ≥ 0, Ax ≥ c
}

and is termed the canonical form, or can be written in standard form

(Ps) min
{〈x, b〉n; x ∈ R

n, x ≥ 0, Ax = c
}
.

The equivalence of these forms follows from the fact that, on the components,
every equality can be replaced by two inequalities and conversely, each inequality
becomes an equality by introducing a new nonnegative variable.

In the following text, we only use the canonical form of linear programming
problems because in this case we may impose some interiority conditions. It is easy
to see that the minimizing problem Pc with operational constraints is a problem of
the type P1 described in the preceding section.

From this, it is enough to take X = X∗ = R
n and Y = Y ∗ = R

m and to choose
the functions f and g as

f (x) =
{

〈x, b〉n, if x ≥ 0,

+∞, otherwise,

g(y) =
{

0, if y ≥ c,

−∞, otherwise.

Thus, to determine the dual of problem Pc as discussed in Sect. 3.2.2, the con-
jugates of the functions f and g are needed. We have

f ∗(u) = sup
{〈u,x〉n − f (x); x ∈R

n
} = sup

{〈u − b, x〉n; x ≥ 0
}

=
{

0, if x ≥ 0,

+∞, otherwise,

for all u ∈ R
n,

g∗(v) = inf
{〈v, y〉m − g(y); y ∈ R

m
} = inf

{〈v, y〉n; y ≥ c
}

=
{

〈v, c〉m, if v ≥ 0,

−∞, otherwise,

for all v ∈R
m. Therefore,

g∗(v) − f ∗(A∗v) =
{

〈v, c〉m, if v ≥ 0 and A∗v ≤ b,

−∞, otherwise.
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Thus, the dual problem is

(P∗
c ) max

{〈v, c〉m; v ∈R
m, v ≥ 0, A∗v ≤ b

}
,

which is a maximization problem, of the same type as Pc, on R
m.

In the standard form, the dual problem is expressed as

(P∗
s ) max

{〈v, c〉m; v ∈R
m, A∗v ≤ b

}
.

It is obvious that the programs Pc , P∗
c and Ps , P∗

s , respectively, are dual to each
other.

If the consistency condition (3.93) is satisfied for Pc and P∗
c , then, from Theo-

rem 3.53, it follows that both problems Pc and P∗
c have optimal solutions. In this

way, we have obtained the following general result.

Theorem 3.82 A feasible element x0 of Pc is an optimal solution if and only if
there exists a feasible element v0 of P∗

c such that

〈x0, b〉s = 〈v0, c〉m.

On the other hand, the extremality conditions (see Theorem 3.54) for a point
(x0, v0) ∈ R

n ×R
m are the following:

x0 ≥ 0, b − A∗v0 ≥ 0, 〈x0, b〉n = 〈x0,A
∗v0〉n,

Ax0 − c ≥ 0, v0 ≥ 0, 〈Ax0, v0〉m = 〈c, v0〉m.

The Kuhn–Tucker function is

K(x, v) = 〈x, b〉n + 〈v, c〉m, ∀x ≥ 0, v ≥ 0.

It is easy to see that an element is a saddle point if and only if it satisfies the
above extremality conditions.

In general, if (x, v) is a pair of feasible elements of Pc and P∗
c , then the relation

〈v, c〉m ≤ 〈x, b〉n
holds.

Finally, we remark that, if one of Problems Pc or P∗
c is inconsistent, then the

other is inconsistent or unbounded. If both Pc and P∗
c are consistent, then they

have an optimal solution and their extreme values are equal.
As another simple utilization of the Fenchel duality, we can consider the infinite-

dimensional linear programming. Thus, we have the basic problem

(P) min
{
(x∗

0 , x); x ∈ P, y0 − Ax ∈ Q
}
,

where X,Y are two Banach spaces, P ⊂ X, Q ⊂ Y are closed convex cones, A :
X → Y is a linear continuous operator and x∗

0 ∈ X∗, y0 ∈ Y .
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We easily see that P can be obtained from P1, by taking f = x∗
0 + IP and

g = −Iy0−Q. Hence, we obtain

f ∗(x∗) = sup
{
(x∗ − x∗

0 , x); x ∈ P
} = IP 0(x

∗ − x∗
0 ),

g∗(y∗) = {
(y∗, y); y ∈ y0 − Q

} = (y∗, y0) − sup
{
(y∗, y); y ∈ Q

}

= (y∗, y0) − IQ0(y
∗).

Therefore, a dual problem associated with P is

(P∗) max
{
(y∗, y0); y∗ ∈ Q0, A∗y∗ − x∗

0 ∈ P 0}.

By virtue of Proposition 3.39, it follows that, if x is a feasible element of P and
y is the feasible element of P∗, then

(y∗, y0) ≤ (x∗
0 , x).

This relation becomes an equality only for pairs of optimal solutions.
The two problems P and P∗ have finite and equal extreme values if and only if

the function

h(y) = inf
{
(x∗

0 , x); x ∈ P, y0 + y − Ax ∈ Q
}

is finite and lower-semicontinuous at the origin of Y . Moreover, according to The-
orem 2.22 it follows that P is stable, that is, P∗ has optimal solutions and
infP = supP∗ ∈R, if the consistency condition

(y0 − intQ) ∩ A(P ) �= ∅
holds. Also, the existence of optimal solutions for P is guaranteed by the dual
consistency condition

(
x∗

0 + intP 0) ∩ A∗(Q0) �= ∅.

For the Kuhn–Tucker function, we obtain

K(x,y∗) = (x∗
0 , x) + (y∗, y0) − (Ax,y∗), ∀(x, y∗) ∈ P × Q0.

Hence, (x0, y
∗
0 ) ∈ P ×Q0 is a pair of solutions of P and P∗, if and only if (x0, y

∗
0 )

is a saddle point of K on P × Q0. On the other hand, the existence of optimal
solutions of P , for every y0 ∈ Y , can be characterized by using Theorem 3.72.

Theorem 3.83 Suppose that P ∩A−1(ȳ −Q) �= ∅ for at least element ȳ ∈ Y . Then,
P has optimal solutions for every y0 ∈ Y and its value is equal to dual value (that
is, P∗ is stable) if and only if the set

H = (A × x∗
0 )(P ) + Q ×R+, (3.157)

is closed in Y × R, where A × x∗
0 : X → Y × R is defined by (A × x∗

0 )(x) =
(Ax, (x∗

0 , x)).
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Using some closedness criteria of the sum of two closed convex sets, we obtain
various optimality conditions. We obtain a special case if P or Q is also locally
compact.

Let us consider the following properties:

(i) x ∈ P ∩ A−1(Q) and (x∗
0 , x) ≤ 0 implies x = 0

(ii) x ∈ P ∩ A−1(Q) and (x∗
0 , x) ≤ 0 implies Ax = 0 and (x∗

0 , x) = 0
(iii) x ∈ P ∩ A−1(Q) and (x∗

0 , x) ≤ 0 implies Ax = 0.

Theorem 3.84 The set H given by (3.157) is closed if one of the following three
conditions is fulfilled:

(c1) P is a locally compact cone and (i) is satisfied
(c2) Q is a locally compact cone, (A × x∗

0 )(P ) is closed and (ii) is satisfied
(c3) Q is a locally compact cone, (iii) is satisfied and the set

{(
Ax, (x∗

0 , x) + r
) ∈ Y ×R; x ∈ P, r ≥ 0

}

is closed.

Proof This result is a consequence of closedness Dieudonné’s criterion (see Theo-
rem 1.59 and its Corollaries 1.60, 1.61).

Now, we consider the problem

(P) min{t; tx1 + x2 ∈ K},
where K ⊂ X is a closed convex set which contains the origin, and x1, x2 ∈ X are
two fixed elements. Taking f (t) = t , t ∈ R, g(x) = −IK−x , x ∈ X, and A(t) = tx1,
t ∈R, we find the dual problem

(P
∗
) max

{
(x2, x

∗) − pK0(−x∗); (x1, x
∗) = −1

}
. �

It is clear that, if P is consistent and infP > −∞, then it has optimal solutions;
the extreme value of P is the lower bound of a real segment. As a consequence of
Theorem 3.53, we obtain Theorem 3.85.

Theorem 3.85 Assume that intK �= ∅ and t̄ ∈ R exists such that t̄x1 + x2 ∈ intK .
If P has finite value, then P

∗
has optimal solutions and the two extreme values are

equal.

In fact, one and only one of the following three assertions is true:

(i) P and P
∗

are consistent.
(ii) One, and only one, of P and P

∗
is consistent and has an infinite value.

(iii) Both problems are inconsistent.

Remark 3.86 If K is a cone, the dual problem P
∗

becomes

max
{
(x2, x

∗); x∗ ∈ −K0, (x1, x
∗) = −1

}
.
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3.3.2 The Best Approximation Problem

Let C be a convex subset of a real linear normed space X. An element z ∈ C is
called a best approximation to x ∈ X from C if

‖x − z‖ ≤ ‖x − u‖, for all u ∈ C. (3.158)

Denote

PC(x) = {
z ∈ C; ‖x − z‖ ≤ ‖x − u‖, for all u ∈ C

}
.

The multivalued mapping x → PC(x), x ∈ X, is called the projection mapping of
the space X into C. Obviously, if C is convex, then PC(x) is a convex subset of C

(possible empty) for every x ∈ X and ‖x − z‖ = d(x;C) for all z ∈ PC(x).
Now, we establish a simple property concerning the best approximation elements

of an element in semistraight line determined by x and z ∈ Pc(x).

Theorem 3.87 If C is a nonvoid set in X, x∈C, and z ∈ PC(x), then

(i) z ∈ PC(λx + (1 − λ)z) for all λ ∈ (0,1)

(ii) z ∈ PC(λx + (1 − λ)z) for all λ > 1, whenever the set C is convex.

Proof (i) If λ ∈ (0,1), we have
∥
∥λx + (1 − λ)z − z

∥
∥ = ‖x − z‖ − (1 − λ)‖x − z‖

≤ ‖x − y‖ − ∥
∥x − (λx + (1 − λ)z

∥
∥

≤ ∥
∥x − y − x + (

λx + (1 − λ)z
)∥∥ = ∥

∥λx + (1 − λ)z − y
∥
∥,

for all y ∈ C, that is, z ∈ PC(λx + (1 − λ)z) if λ ∈ (0,1).
(ii) If z ∈ PC(x) and λ > 1, we have

∥
∥λx + (1 − λ)z − z

∥
∥ = λ‖x − z‖ ≤ λ

∥
∥
∥
∥x −

(
1

λ
y +

(

1 − 1

λ

)

z

)∥
∥
∥
∥

= ∥
∥λx + (1 − λ)z − y

∥
∥, for all y ∈ C,

since, by convexity of C, it follows that

1

λ
y +

(

1 − 1

λ

)

z ∈ C.

This proves that z ∈ PC(λx + (1 − λ)z). �

It is obvious that an element of the best approximation is an optimal solution of
the minimization problem

min

{
1

2
‖u − x‖2 + IC(u); u ∈ X

}

,

where x is the given element of X.
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According to Remark 3.2, we may infer that z is a best approximation to x

from C, if and only if there exists x∗
0 ∈ X∗ subject to

f (z) + f ∗(x∗
0 ) ≤ (x∗

0 , u), for all u ∈ C, (3.159)

where f (u) = 1
2‖u − x‖2, u ∈ X. As a consequence of this fact, we obtain the

following theorem.

Theorem 3.88 An element z ∈ C is a best approximation to x ∈ X from elements of
the convex set C if and only if there exists x∗

0 ∈ X∗ such that

(i) ‖x∗
0‖ = ‖z − x‖

(ii) (x∗
0 , u − x) ≥ ‖z − x‖2, ∀u ∈ C.

Proof Indeed, we have

f ∗(x∗
0 ) = sup

{

(x∗
0 , u) − 1

2
‖u − x‖2; u ∈ X

}

= (x∗
0 , x) + sup

{

(x∗
0 , u) − 1

2
‖u‖2; u ∈ X

}

= (x∗
0 , x) + 1

2
‖x∗

0‖2

and the optimality condition (3.159) becomes

1

2
‖z − x‖2 + 1

2
‖x∗

0 ‖2 ≤ (
x∗

0 , u − x
)
, ∀u ∈ C. (3.160)

In particular, for u = z, we obtain (‖z − x‖ − ‖x∗
0‖) ≤ 0, which implies con-

dition (i). Consequently, from inequality (3.160), condition (ii) follows, as claimed.
Conversely, it is clear that conditions (i) and (ii) imply that z is a best approximation,
because we have

‖z − x‖2 ≤ (x∗
0 , u − x) ≤ ‖x∗

0 ‖‖u − x‖ = ‖z − x‖‖u − x‖, ∀u ∈ C,

and therefore we must have (3.158). �

Corollary 3.89 If z ∈ C is a best approximation of x ∈ X by elements of the convex
set C, then the minimax relation

‖x − z‖ = min
u∈C

max
‖x∗‖=1

(x∗, u − x) = max
‖x∗‖=1

min
u∈C

(x∗, u − x) (3.161)

holds.

Proof This follows with clarity if we use the relationship between the solutions to
Problem P and property (2.133) of the saddle points and relation (1.36). To this
end, it suffices to remark that the point x0, the existence of which is ensured by the
above theorem, is just the solution of the dual problem. �
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Remark 3.90 Generally, if x is a point situated at the distance d > 0 from the convex
set C, we obtain a weak minimax relation by replacing “min” by “inf” because in
such a case only the dual problem has solutions (see Theorem 3.70).

Next, we note several special cases in which conditions (i) and (ii) have a simpli-
fied form. Namely, if C is a convex cone with vertex in the origin, then condition (ii)
is equivalent to the following pair of conditions:

(ii′) (x∗
0 , u) ≤ 0, ∀u ∈ C, that is, x∗

0 ∈ C0

(ii′′) (x∗
0 , x) = ‖x − z‖2.

Here is the argument. From condition (ii), replacing x∗
0 by −x∗

0 , we obtain (x∗
0 , x −

nu) ≥ ‖x − z‖2, ∀u ∈ C, ∀n ∈ N, because C is a cone. Therefore, we cannot have
(x∗

0 , u) > 0 for some element u ∈ C, that is, (ii′) holds.
Moreover, from Properties (ii) and (ii′) it follows that

‖x − z‖2 ≤ (x∗
0 , x − z) ≤ ‖x∗

0‖ ‖x − z‖ = ‖x − z‖2;
hence (x∗

0 , x − z) = ‖z − x‖2. Thus, we have

0 ≥ (x∗
0 , z) = (x∗

0 , x) − (x∗
0 , x − z) = (x∗

0 , x) − ‖x − z‖2.

On the other hand, from (ii), for −x∗
0 and u = 0, we obtain the inequality

(x∗
0 , x) ≥ ‖x − z‖2,

which implies Property (ii′′). The reciprocal is obvious.
When C is a linear space, Condition (ii′) is equivalent to

(x∗
0 , u) = 0, ∀u ∈ C,

because, in this case, C = −C.
It should be mentioned that the best approximation belongs to C ∩ S(x;d) and

it exists if and only if there exist separating hyperplanes which meet C. Moreover,
the set of all the best approximations is convex and coincides with the intersection
of the set with any separating hyperplanes. When this intersection is nonempty, the
separating hyperplanes is a support hyperplane and is given by the equation

(x∗
0 , u − x) = ‖x − z‖2, u ∈ X.

Now, let us study the existence of the best approximations. Let

d = inf
{‖u − x‖; u ∈ C

}
. (3.162)

Firstly, it is obvious that if a minimizing sequence, that is (un)n∈N ⊂ C and
‖un − x‖ → d , has a convergent subsequence in C, then its limit is a best approxi-
mation element. The set of this type is called an approximatively compact set. Any
approximatively compact set is necessarily closed. For instance, any closed convex
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set in a Banach uniform convex space is approximatively compact. Indeed, using
Proposition 1.59, it follows that any minimizing sequence is a Cauchy sequence,
and therefore it is convergent.

We easily see that

inf
{‖u − x‖; u ∈ C

} = inf
{‖u − x‖; u ∈ C ∩ S(x;d + ε)

}
, (3.163)

where S(x;d + ε) = {y ∈ X; ‖y − x‖ ≤ d + ε}, ε > 0.

Theorem 3.91 If the convex set C is such that there exists an ε > 0, for which the
set C ∩ S(x;d + ε) is weakly compact, then x has a best approximation in C.

Proof According to relation (3.163), it suffices to recall that a lower-semicontinuous
function on a compact set attains its infimum. In our case, the function is obviously
weakly lower-semicontinuous (see Proposition 1.73) on the weakly compact set C ∩
S(u;d + ε). �

Corollary 3.92 In a reflexive Banach space, every element possesses at least one
best approximation with respect to every closed convex set.

Proof The set C ∩S(u;d +1) is convex closed and bounded and, hence, it is weakly
compact by virtue of the reflexivity (see Theorem 1.94). �

Corollary 3.93 In a Banach space, every element possesses at least one best appro-
ximation with respect to every closed, convex and finite-dimensional set.

Proof In a finite-dimensional space, the bounded closed convex sets are compact
and, hence, weakly compact. �

Remark 3.94 The existence of the best approximations for closed convex sets is a
characteristic property of reflexive spaces: a Banach space has the property that
every element possesses best approximations with respect to every closed convex
set if and only if it is reflexive. It is clear that this characterization is equivalent to
the property that every continuous linear functional attains its supremum on the unit
ball (see James [56, 57]).

In the uniqueness of the best approximations, a crucial role is played by strictly
convex spaces, while in the existence problem the same role is played by reflexive
spaces.

Theorem 3.95 If X is strictly convex, then each element x ∈ X possesses at most
one best approximation with respect to a convex set C ⊂ X.

Proof Assume by contradiction that there exist two distinct best approximations,
z1, z2 in C. Since the set of best approximations is convex, it follows that 1

2 (z1 + z2)

is also a best approximation.
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Hence, if d = d(x;C), we have

0 < d = ‖x − z1‖ = ‖x − z2‖ =
∥
∥
∥
∥x − 1

2
(z1 + z2)

∥
∥
∥
∥

and, thereby
∥
∥
∥
∥

1

d
(x − z1)

∥
∥
∥
∥ =

∥
∥
∥
∥

1

d
(x − z2)

∥
∥
∥
∥ = 1.

In view of the strict convexity (see Proposition 1.103(ii)), we have

1 >

∥
∥
∥
∥

1

2d
(x − z1) + 1

2d
(x − z2)

∥
∥
∥
∥ = 1

d

∥
∥
∥
∥x − 1

2
(z1 + z2)

∥
∥
∥
∥ = 1,

which is a contradiction. �

Remark 3.96 This property is characteristic of the strictly convex spaces: if, in a
Banach space X, every element possesses at most a best approximation with respect
to every convex set (it is enough for the segments), then X is strictly convex.

Indeed, if we assume that X is not strictly convex, then there exist x, y ∈ X,
x �= y, with ‖x‖ = ‖y‖ = ‖ 1

2 (x + y)‖ = 1. Furthermore, ‖αx + (1 − α)y‖ = 1,
∀α ∈ [0,1]. Hence, the origin has as the best approximation with respect to the
closed convex set [x, y] every element of this set, and this, clearly, contradicts the
uniqueness.

From Corollary 3.92 and Theorem 3.91, it follows that in a reflexive strictly con-
vex Banach space, for every closed convex set C, the domain of projection mapping
PC is whole X, that is, PC(x) �= ∅ for any x ∈ X.

Theorem 3.97 If C is a closed locally compact convex set of a strictly convex
space X, then the projection function is continuous on X.

Proof If xn → x, for every ε > 0, then there exists n0(ε) ∈ N such that ‖xn −x‖ < ε

for all n > n0(ε). Denote

dn = d(xn;C) = inf
u∈C

‖xn − u‖, d = d(x;C) = inf
u∈C

‖x − u‖.

We have

dn ≤ inf
u∈C

{‖x − u‖ + ‖xn − x‖} < d + ε, ∀n > n0(ε),

hence,

‖x − PCxn‖ ≤ ‖xn − PCxn‖ + ‖xn − x‖ < dn + ε < d + 2ε.
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Since the locally compact convex set C ∩S(x;d + ε) does not contain any half-line,
it follows that it is compact (see, for instance, Köthe [61], p. 340). Thus,

⋂

ε>0

S(x;d + ε) ∩ C �= ∅

and any subsequence of PCxn has a cluster point z which satisfies ‖x − z‖ = d .
Because X is strictly convex, this point is unique and so, PCxn → z = PCx, as
claimed. �

A set C is called proximinal if every element of X has a best approximation in C.
That is, the set C is proximinal if the problem

min
{‖x − u‖; u ∈ C

}

has solutions for every x ∈ X. Thus, by Theorem 3.64, we obtain the following
characterization of proximinal sets.

Theorem 3.98 A nonempty set C of a linear normed space X is proximinal if and
only if epi‖ · ‖ + C × {0} is closed in X × R. Moreover, if C is a convex set which
contains the origin, we have

min
{‖x − u‖; u ∈ C

} = max
{
(x∗, x) − PC0(x

∗); x∗ ∈ X∗ ∩ C0},

for every x ∈ X.

Proof Taking, in Theorem 3.72, f = IC , g = −‖ · ‖, A = I , we observe that

H = {(
u + x,‖x‖ + r

) ∈ X ×R; u ∈ C, x ∈ X, r ≥ 0
} = epi‖ · ‖ + C × {0},

as claimed. �

Finally, we establish a simple characterization of proximinal sets.

Theorem 3.99 A nonempty set C in a linear normed space is proximinal if and only
if C + S(0; r) is closed for any r ≥ 0.

Proof Let C be a proximinal set. If x ∈ C + S(0; r), there exists a sequence (an +
bn)n∈N convergent to x such that (an)n∈N ⊂ C, ‖bn‖ ≤ r , for all n ∈ N. Hence,
d(an + bn;C) ≤ r , n ∈ N, and so, d(x;C) ≤ r . Now, if x̄ ∈ PC(x), then ‖x − x̄‖ =
d(x;C) ≤ r . Therefore, taking ȳ = x − x̄, we have x = x̄ + ȳ ∈ C + S(0; r), that is,
C + S(0; r) is closed.

Conversely, we consider an arbitrary element x and we denote d(x;C) = r . If
r = 0, then x ∈ C since C is closed. Hence, x ∈ PC(x). Therefore, we can suppose
r > 0. Let (xn)n∈N ⊂ C be an approximant sequence ‖x − xn‖ ≤ r + 1

n
, n ∈ N

∗. If
we denote

r

r + 1
n

(x − xn) = yn,
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then yn ∈ S(0; r) and

x = xn + yn + 1

nr
yn, n ∈ N

∗.

Since xn + yn ∈ C + S(0; r) and 1
nr

yn → 0, it follows that x ∈ C + S(0; r). Thus,
if C + S(0, r) is closed, we get x ∈ C + S(0, r), that is, there exists x̄ ∈ C such that
‖x − x̄‖ ≤ r . Therefore, x̄ ∈ PC(x), which proves that the set C is proximinal. �

Remark 3.100 In the case of linear closed subspaces, this result is due to Godini [45]
in the following equivalent form: the image of unit closed ball by quotient operator
is closed in quotient space with respect to that linear closed subspace.

3.3.3 Additivity Criteria for Subdifferentials of Convex Functions

The Fenchel duality theory can be used to get sharp additivity criteria for subdiffe-
rentials besides that established in Sect. 2.2.4 or in Sect. 3.2.2.

To begin with, we mention the following theorem concerning the pointwise ad-
ditivity of subdifferential.

Theorem 3.101 Let f1, f2 be two proper convex lower-semicontinuous functions
defined on a locally convex space X. If x ∈ Dom(f1)∩ Dom(f2), then the following
statements are equivalent:

(i) ∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x)

(ii) For every x∗ ∈ ∂(f1 + f2)(x) there exists x∗
1 ∈ X∗ such that

(f1 + f2)
∗(x∗) = f ∗

1 (x∗
1 ) + f ∗

2 (x∗ − x∗
1 ), (3.164)

(iii) The minimization problem

min
{
f ∗

1 (u∗) + f ∗
2 (x∗ − u∗); u∗ ∈ X∗} (Px∗)

has optimal solutions for any x∗ ∈ ∂(f1 +f2)(x) and its optimal value is (f1 +
f2)

∗(x∗).

Proof (i) → (ii) Let us consider an arbitrary element x∗ ∈ ∂(f1 + f2)(x). By (i),
there exists x∗

1 ∈ ∂f1(x) such that x − x∗
1 ∈ ∂f2(x). Therefore, we have

x∗
1 (x) = f1(x) + f ∗

1 (x∗
1 ), (3.165)

(x∗ − x∗
1 )(x) = f2(x) + f ∗

2 (x∗ − x∗
1 ), (3.166)

x∗(x) = (f1 + f2)(x) + (f1 + f2)
∗(x∗). (3.167)

Adding (3.165) and (3.166), it follows that we have equality (3.164).
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(ii) → (iii) By the Young inequality, for any u∗ ∈ X∗, we have

f ∗
1 (u∗) ≥ u∗(v) − f1(v) for all v ∈ X,

f ∗
2 (x∗ − u∗) ≥ (x∗ − u∗)(v) − f2(v), for all v ∈ X,

and so,

f ∗
1 (u∗) + f ∗

2 (x∗ − u∗) ≥ x∗(v) − (f1 + f2)(v), for all v ∈ X.

Using the definition of the conjugate, we get

f ∗
1 (u∗) + f ∗

2 (x∗ − u∗) ≥ (f1 + f2)
∗(x∗).

Taking x∗
1 ∈ X∗ such that equality (3.164) holds, it follows that x∗

1 is an optimal
solution of (Px∗). Moreover, its optimal value is equal to (f1 + f2)

∗(x∗), that is,
(iii) is completely proved. In fact, it is obvious that (iii) → (ii), and so, (ii) and (iii)
are equivalent.

(ii) → (i) Let us have x∗ an arbitrary element of ∂(f1 +f2)(x) and x∗
1 ∈ X∗ such

that equality (3.164) holds. Using again the Young inequality, we have

f ∗
1 (x∗

1 ) ≥ x∗
1 (x) − f1(x),

f ∗
2 (x∗ − x∗

1 ) ≥ (x∗ − x∗
1 )(x) − f2(x). �

Since (3.167) also holds, it follows that both inequalities are just equalities, that
is, x∗

1 ∈ ∂f1(x) and x∗ − x∗
1 ∈ ∂f2(x). Consequently, the pointwise additivity equal-

ity (i) is true.
Now, we can establish a characterization of the pointwise additivity of a subdif-

ferential by a closedness property.

Theorem 3.102 Given an element x ∈ ∂(f1) ∩ D(f2), where f1, f2 are two proper
convex lower-semicontinuous functions on a locally convex space X, then

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x), (3.168)

if and only if the following closedness condition is fulfilled:

(epif ∗
1 + epif ∗

2 ) ∩ [
∂(f1 + f2)(x) ×R

]

= (epif ∗
1 + epif ∗

2 ) ∩ [
∂(f1 + f2)(x) ×R

]
. (3.169)

Proof According to the previous characterization, Theorem 3.101(iii), we can ap-
ply Lemma 3.59 and Remark 3.60, where the spaces X,Y are equal to the dual
space X∗, A = ∂(f1 +f2)(x) and F(u∗, x∗) = f ∗

1 (u∗)+f ∗
2 (x∗ −u∗), u∗, x∗ ∈ X∗.

By a standard computation, it follows that h∗∗(x∗) = (f1 + f2)
∗(x∗), and so, state-

ment (iii) in Theorem 3.101 holds if and only if Problems Px∗ have optimal so-
lutions and h is lower-semicontinuous on ∂(f1 + f2)(x) since, by hypothesis,
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h(x∗) > −∞ for all x∗ ∈ ∂(f1 +f2)(x). On the other hand, the set H in Lemma 3.59
becomes

H = {
(x∗, t) ∈ X∗ ×R; there exists u∗ ∈ X∗ such that F(x∗, u∗) ≤ t

}

= {
(x∗, t) ∈ X∗ ×R; there exists u∗ ∈ X∗

such that f ∗
1 (u∗) + f ∗

2 (x∗ − u∗) ≤ t
}

= (epif ∗
1 + epif ∗

2 ) ∩ (X∗ ×R).

Thus, the equality H ∩ (A × R) = H ∩ (A × R) in Remark 3.60 is just equal-
ity (3.171), and the theorem is proved. �

Corollary 3.103 If epif ∗
1 + epif ∗

2 is a closed set, then the subdifferential is addi-
tive, that is (3.168) holds for all x ∈ X.

Remark 3.104 In the previous proof, we supposed that ∂(f1 + f2)(x) �= ∅. In fact,
if ∂(f1 + f2)(x) = ∅, then ∂f1(x) = ∅, or ∂f2(x) = ∅, and so, the additivity prop-
erty (3.168) is fulfilled.

Remark 3.105 We recall that the convolution of two extended real-valued functions
f,g on a liner space U is defined by

(f ∇g)(u) = inf
{
f (v) + g(u − v); v ∈ U

}
, u ∈ U.

If “inf” is attended on U for every element of a set A ⊂ U , we have an exact convo-
lution on A (see, for instance, [70]). Property (iii) in Theorem 3.101 proves that the
(infimal) convolution f ∗

1 ∇f ∗
2 is exact on ∂(f1 + f2)(x). Also, the equality (3.164)

can be rewritten as (f ∗
1 ∇f ∗

2 )(x∗) = (f1 + f2)
∗(x∗) for all x∗ ∈ ∂(f1 + f2)(x).

By Corollary 3.103, it follows that, if epif ∗
1 + epif ∗

2 is a closed set, then the
convolution (f1∇f2)(x) is exact for any x ∈ Range ∂(f ∗

1 + f ∗
2 ). We recall that

(f1∇f2)
∗ = f ∗

1 + f ∗
2 , but f1∇f2 cannot be proper and lower-semicontinuous (see,

for instance, Laurent [70]). Also, there exists a strong connection between prop-
erty (iii) and the Fenchel duality theorem. Consequently, property (iii) in Theo-
rem 3.101 can be reformulated in the following two equivalent forms:

(iv) The convolution f ∗
1 ∇f ∗

2 is exact and lower-semicontinuous on ∂(f1 + f2)(x)

(v) The duality Fenchel theorem is true for the functions f1, and x∗ − f2 for every
x∗ ∈ ∂(f1 + f2)(x).

3.3.4 Toland Duality Theorem

Surprisingly enough, the Fenchel duality theorem extends to a non-convex mini-
mization problem of the form

inf
u∈X

{
g(u) − f (u)

}
, (3.170)
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where f and g are convex, proper and lower-semicontinuous functions on a linear
topological space X. More precisely, one has the following theorem known in the
literature as the Toland duality theorem. (See Toland [111].)

Theorem 3.106 (Toland) Let X and X∗ be linear topological spaces in duality
through the bilinear functional 〈·, ·〉. Let f : X → R and g : X → R be two lower-
semicontinuous, convex and proper functions and let f ∗ : X∗ →R, g∗ : X∗ →R be
their conjugates. Then

inf
u∈X

{
g(u) − f (u)

} = inf
v∈X∗

{
f ∗(v) − g∗(v)

}
. (3.171)

Proof We note first that by the definition of f ∗ and g∗ that, for each λ ∈ R, if
g(u) − f (u) ≥ λ for all u ∈ X, then f ∗(v) − g∗(v) ≥ λ, ∀v ∈ X∗. Hence,

inf
u∈X

{
g(u) − f (u)

} ≤ inf
v∈X∗

{
f ∗(v) − g∗(v)

}
.

Conversely, if f ∗(v) − g∗(v) ≥ λ for all v ∈ X∗, we have f ∗(v) ≥ g∗(v) + λ, ∀v ∈
X∗, and therefore (see Proposition 2.19)

f (u) = f ∗∗(u) ≤ g∗∗(u) − λ ≤ g(u) − λ, ∀u ∈ X.

We have, therefore,

g(u) − f (u) ≤ λ, ∀u ∈ X,

which yields

inf
u∈X

{
g(u) − f (u)

} ≥ inf
v∈X∗

{
f ∗(v) − g∗(v)

}
,

thereby completing the proof of (3.171). �

Theorem 3.107 Under the conditions of Theorem 3.106, assume that u0 is a solu-
tion to Problem (P), that is,

u0 = arg inf
u∈V

{
g(u) − f (u)

}
.

Then, any u0 ∈ ∂f (u0) is a solution to the dual problem

inf
v∈X∗

{
f ∗(v) − g∗(v)

}
, (3.172)

that is,

u∗
0 = arg inf

v∈X∗
{
f ∗(v) − g∗(v)

}
. (3.173)

Moreover, one has, in this case,

0 ∈ ∂f (u0) − ∂g(u0),

0 ∈ ∂f ∗(u∗
0) − ∂g∗(u∗

0).
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Proof We have

g(u0) − f (u0) ≤ g(u) − f (u), ∀u ∈ X.

This yields

f (u) − f (u0) ≤ g(u) − g(u0), ∀u ∈ X,

and, since u∗
0 ∈ ∂f (u0), we have

〈u − u0, u
∗
0〉 + g(u0) ≤ g(u), ∀u ∈ X.

Hence, u∗
0 ∈ ∂g(u0). We have, therefore,

g(u0) + g∗(u∗
0) = 〈u0, u

∗
0〉,

f (u0) + f ∗(u∗
0) = 〈u0, u

∗
0〉.

One might suspect, by Theorem 3.106, that if u0 is a solution to problem (3.170),
then

0 ∈ ∂g(u0) − ∂f (u0)

and that

0 ∈ ∂g∗(u∗
0) − ∂f ∗(u∗

0),

where u∗
0 ∈ ∂f (u0).

It turns out that this is, indeed, the case, even in the case where f and g are not
convex. �

Theorem 3.108 Assume that u0 is a solution of (P) and that ∂f (u0) �= ∅. Then, any
u∗

0 ∈ ∂f (u0) is a solution to the dual problem

inf
v∈X∗

{
f ∗(v) − g∗(v)

}
.

Moreover, one has

f (u0) + f ∗(u∗
0) = 〈u0, u

∗
0〉, (3.174)

g(u0) + g∗(u∗
0) = 〈u0, u

∗
0〉. (3.175)

Proof We have g(u0) − f (u0) ≤ g(u) − f (u), ∀u ∈ X, and, since u∗
0 ∈ ∂f (u0), we

have

〈u − u0, u
∗
0〉 + g(u0) ≤ g(u), ∀u ∈ X.

Hence, v∗
0 ∈ ∂g(u0) and (3.174) and (3.175) follow. �
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3.3.5 The Farthest Point Problem

The aim of this section is to establish characterizations of remotal sets by a property
of closedness of some associated sets. We also examine the connection between the
farthest point problem and the best approximation problem (see Sect. 3.3.2).

Let X be a linear normed space and let A be a given nonvoid set A in X. Let us
consider the optimization problem

(A1) max
y∈A

‖x − y‖, x ∈ X,

called the farthest point problem. The corresponding best approximation problem is

(A2) min
y∈A

‖x − y‖, x ∈ X,

but most of the properties of this two problems are different.
First, we remark that Problem (A1) can be considered only for convex sets A,

because it has solutions if and only if there exist solutions in its convex hull, convA

(see, for instance, Hiriart–Urruty [52]). Even in the case of convex sets A when
Problem (A2) is a convex optimization problem, Problem (A1) is not convex being
a typical d.c. optimization problem, that is, the minimization of a difference of two
convex functions. It is easy to remark that the farthest point Problem (A1) can be
also given in one of the following types: P1 (the maximization of a convex function
on a convex set) and P2 (the minimization of a convex function on the complement
of a convex set). Indeed, Problem (A1) can be, equivalently, written as

(A′
1) min

y∈A

{
IA(x) − ‖x − y‖}, x ∈ X,

or

(A′′
1) min‖x−y‖≥t

{
IA(x) − t

}
, x ∈ X.

Consequently, we obtain some optimality conditions using the normal cone of A

and the ε-subdifferential of the norm (see, for example, Hiriart-Urruty [51]).
In the sequel, we recall some concepts associated to the farthest point problem

which are similar to some known concepts of the best approximation theory.
We denote

ΔA(x) = sup
y∈A

‖x − y‖, x ∈ X, (3.176)

called the farthest distance function of the set A,

QA(x) = {
x̄ ∈ A; ‖x − x̄‖ = ΔA(x)

}
, x ∈ X, (3.177)

called the farthest point mapping (or antiprojection) with respect to A. The elements
of QA(x) are called farthest points of x through elements of the set A. The set A is
called a remotal set if QA(x) �= ∅ for x ∈ X.
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It is obvious that the mapping ΔA is a continuous convex function. Moreover,

∣
∣ΔA(x1) − ΔA(x2)

∣
∣ ≤ ‖x1 − x2‖, x1, x2 ∈ X. (3.178)

Consequently, ΔA is subdifferentiable and ∂ΔA(x) ⊂ SX∗(0;1) for every x ∈ X.
On the other hand, we notice that by Toland duality (see Sect. 3.3.4), we have the

following equality:

ΔA(x) = sup
{
x∗(x) − sA(x∗); ‖x∗‖ ≤ 1

}
,

where sA is the support functional of A, that is,

sA(x∗) = sup
{
x∗(u); u ∈ A

}
.

We also recall some simple convexity properties.

ΔA(x) = ΔconvA (x), (3.179)

ΔA

(
λx + (1 − λ)y

) = λΔA(x) for all y ∈ QA(x), (3.180)

y ∈ QA

(
λx + (1 − λ)y

)
if y ∈ QA(x) and λ > 1. (3.181)

Theorem 3.109 A nonvoid bounded set A in a linear normed space X is remotal if
and only if the associated set

Kd = A + cS(0;d), (3.182)

is closed for every d > 0.

Proof Let x be an adherent element of A + cS(0;d), that is, there exist a sequence
(xn)n∈N convergent to x and a sequence (un)n∈N ⊂ A such that ‖xn − un‖ ≥ d for
all n ∈ N. Thus, for every ε > 0 there exists nε ∈ N such that ‖x − un‖ > d − ε

for all n ≥ nε . Now, if A is remotal, taking an element x̄ ∈ QA(x), we find that
‖x − x̄‖ ≥ ‖x −un‖, n ∈ N, and so ‖x − x̄‖ > d − ε, for every ε > 0. Consequently,
‖x − x̄‖ ≥ d , that is, x ∈ A + cS(0;d).

Conversely, for an arbitrary element x ∈ X, we take d = ΔA(x). We can suppose
d > 0 since ΔA(x) = 0 if and only if A = {x} when A is obviously remotal. For
every n ∈N

∗ there exists un ∈ A such that ‖x − un‖ ≥ d − 1
n

. But we have

1

n

(

d − 1

n

)−1

(x − un) + x ∈ un + cS(0;d) ⊂ A + cS(0;d),

for all n ∈ N
∗, such that n > 1

d
. Since (un)n∈N∗ is bounded, passing to the limit we

get x ∈ A + cS(0;d). Therefore, if A + cS(0;d) is closed there exists x̄ ∈ A such
that ‖x − x̄‖ ≥ d , that is, x̄ ∈ QA(x). Hence, the set A is remotal. �
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Remark 3.110 It is easy to see that

cKd =
⋂

a∈A

S(a;d) (3.183)

and so, the set Kd is always the complement of a convex bounded set. Consequently,
a nonvoid bounded set A is remotal if and only if the convex set

⋂
a∈A S(a;d) is

open for any d > 0.

Corollary 3.111 Any closed ball in a linear normed space is remotal.

Remark 3.112 We denote r(A) = inf{ΔA(x); x ∈ X}, usually called the radius
of A. If d < r(A), then Kd = X, and so, in Theorem 3.109, it suffices to consider
only the case d ≥ r(A). Obviously, the set Kd is nonvoid complement of a convex
set for any d ≥ 0 and Kd �= X if d > r(A).

Remark 3.113 We say that a set A is d-remotal (d-proximinal) if QA(x) �= ∅
(PA(x) �= ∅) whenever ΔA(x) = d (d(A;x) = d). From the proof of Theorem 3.109
it follows that a set A is d-remotal if Kd is closed. Generally, the converse statement
is not true. But if a set is d-remotal for any d ≥ d0, then the sets Kd are closed for
all d ≥ d0. Therefore, the property of d-remotability is different of the property of
the set Kd to be closed. Similar statements for d-proximinality hold. A relationship
between d-proximinality and d-remotability will be given in Remark 3.119.

The above characterization of remotal sets is similar to the one of proximinal sets
(Theorem 3.97) characterized by the closedness of the associated set

Hd = A + S(0;d). (3.184)

Taking into account that the associated sets Hd and Kd have the properties of
symmetry with respect to the sets A and S(0;1), respectively, cS(0;1), we obtain
some properties of duality between proximinality and remotability.

Theorem 3.114 Let A be a closed bounded convex set such that 0 ∈ intA. Then

(i) A is proximinal if and only if S(0;1) is proximinal with respect to pA

(ii) A is remotal if and only if cS(0;d) is proximinal, for any d > 0, with respect
to pA

where pA is the Minkowski functional associated to the set A.

Proof (i) By hypothesis, the Minkowski functional pA is an equivalent norm in X,
generally asymmetric and

SpA
(0;d) = dA, SpA

(0;1) = intA.
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Therefore, in the linear (asymmetric) normed space (X,pA) the closed set S(0;1) is
proximinal with respect to pA if and only if S(0;1) + SpA

(0;d) = d(A + S(0; 1
d
))

is closed for all d > 0, that is, A is proximinal in X. The other assertions can be
proved using the corresponding above theorems. �

Corollary 3.115 If in a linear normed space X there exists a remotal set, then X

can be endowed with an equivalent norm, generally asymmetric, such that there
exists a bounded, symmetric, convex body whose complement is proximinal.

Proof By Theorem 3.114, the set S(0;1) has the required properties. �

Remark 3.116 Theorem 3.114 is also true in any asymmetric normed space.

Therefore, the proximinality, respectively, remotability, are dependent of the
topological properties of a pair of sets (A,B) such that A + B , A + cB is closed. If
A,B are convex sets, then A + B is also convex, while A + cB is not convex being
the complement of a convex set. Thus, the case A + cB is little difficult, even in the
case of weakly compact sets.

Property (ii) in Theorem 3.114 can be also presented in a pointwise form which,
at the same time, establishes a relationship between two d.c. optimization problems.
Let us consider the special farthest point problem

(A9) max
{‖x − y‖1; y ∈ S‖·‖2(0;1)

}
, x ∈ X,

and the associated best approximation problem

(A10) min
{‖x − αy‖2; y ∈ cS‖·‖1(0;1)

}
, x ∈ X,

where ‖ · ‖1, ‖ · ‖2 are two equivalent norms in X and

(A11) α = sup
{‖x − y‖1; y ∈ S‖·‖2(0;1)

}
.

Theorem 3.117 Problem (A9) has an optimal solution if and only if Problem (A10)

has an optimal solution.

Proof Let ȳ be an optimal solution of (A9), that is, α = ‖x − ȳ‖1 and ‖ȳ‖2 ≤ 1.
Obviously, α > 0 and ‖ȳ‖2 = 1. Taking x − ȳ = αz̄, we have ‖z̄‖1 = 1 and ‖x −

αy‖2 ≥ 1 for any y ∈ cS‖·‖1(0;1). Indeed, in the contrary case, it follows that there
exists y1 ∈ X such that ‖y1‖1 ≥ 1 and ‖x − αy1‖2 < 1. Since ‖x − y‖1 < α for any
y ∈ S‖·‖2(0;1) (the solutions of (A9) are boundary elements of S‖·‖2(0;1), it follows
that α‖y1‖1 = ‖x − (x − αy1)‖1 < α, that is, ‖y1‖ < 1, which is a contradiction.

Conversely, if z̄ is an optimal solution of (A10), we denote x − αz̄ = ȳ. But ne-
cessarily it follows that ‖z̄‖1 = 1 and therefore ‖x − ȳ‖1 = α. On the other hand,
for every ε > 0 there exists yε ∈ S‖·‖2(0;1) such that ‖x − yε‖1 > α − ε and so

∥
∥
∥
∥x − α

α − ε
(x − yε)

∥
∥
∥
∥

2
≥ ‖x − αz̄‖2,
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which implies

∥
∥
∥
∥yε − ε

α − ε
(x − yε)

∥
∥
∥
∥

2
≥ ‖x − αz̄‖2 = ‖ȳ‖2.

But
∥
∥
∥
∥yε − ε

α − ε
(x − yε)

∥
∥
∥
∥

2
≤ ‖yε‖2 + ε

α − ε
‖x − yε‖2 ≤ 1 + ε

α − ε

(‖x‖2 + 1
)
.

Therefore,

‖ȳ‖2 ≤ 1 + ε

α − ε

(
1 + ‖x‖2

)
,

for any ε > 0. Consequently, for ε ↘ 0 we obtain ‖ȳ‖2 ≤ 1. Since ‖x − ȳ‖1 = α, it
follows that ȳ is an optimal solution of (A9). �

Remark 3.118 In fact, we have

val(A9) = val(A10) = α

and both problems are d.c. optimization problems of type P1 and P2, respectively.

Remark 3.119 According to Remark 3.113, we find that Theorem 3.117 can be
reformulated as follows: if S‖·‖2(0;1) is d-remotal with respect to ‖ · ‖1, then
cS‖·‖1(0;d) is d-proximinal for ‖ · ‖2 (see, also, (3.182) in this special case).

3.4 Problems

3.1 Find the dual of the function ϕ : L2(Ω) → R
∗

defined in Example 2.56.

Hint. We have

ϕ∗(p) = sup
y∈H 1

0 (Ω)

{∫

Ω

py dξ − 1

2

∫

Ω

|∇y|2 dξ −
∫

Ω

g(y)dξ

}

and by Theorem 3.54 we have (see, also, Example 3.78)

ϕ∗(p) = sup

{∫

Ω

g∗(p)dξ − 1

2
‖p + y‖2

H−1(Ω)

}

.

3.2 Let {fn} be a sequence of lower-semicontinuous convex functions on a reflexive
Banach space X. The sequence is said to be M-convergent to f (convergent in the
sense of Mosco) if the following conditions hold:
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(a) For each sequence {un} weakly convergent to u, we have

lim inf
n→∞ fn(un) ≥ f (u).

(b) For each u ∈ X, ∃{un} strongly convergent to u such that

lim
n→∞fn(un) = f (u).

Show that, if {fn} is M-convergent to f , then for each λ > 0 and u ∈ X

un = arg inf
X

{

fn(x) + 1

2λ
‖x − u‖2

}

→ u∗ as n → ∞,

where

u∗ = arg inf
X

{
1

2λ
‖x − u‖2 + f (x)

}

.

Hint. We have fn(un) + 1
2λ

‖un − u‖2 ≤ fn(u), ∀n, and this yields the desired
result.

3.3 Show that {fn} is M-convergent to f if and only if ∂fn
G−→ ∂f , that is, for each

(u, v) ∈ ∂f , there are (un, vn) ∈ ∂fn, n ∈ N
∗, such that un → u, vn → v strongly in

X and X∗, respectively, as n → ∞.

Hint. If fn → f (M-convergent to f ) and (u, v) ∈ ∂f , we have by (3.1) that

un = arg inf

{

fn(x)− (v, x)+ 1

2
‖x −u‖2

}

→ arg inf
X

{
1

2
‖x −u‖2 +f (x)− (v, x)

}

and (F : X → X∗ is the duality mapping)

∂fn(un) − v + F(un − u) = 0.

Hence, vn = v − F(un − u) ∈ ∂fn(un) is strongly convergent to v.

3.4 Show that if F : X → X is a mapping on the complete metric space X with the
distance d such that d(x,F (x)) ≤ ϕ(x) − ϕ(F (x)), ∀x ∈ X, where ϕ : X →R is an
lower-semicontinuous function bounded from below, then F has a fixed point (the
Caristi fixed point theorem).

Hint. One applies Corollary 3.74, where f = ϕ and ε = 1
2 .

3.5 Prove that a nonvoid w∗-closed set A in the dual X∗ of a linear normed space
X is proximinal.
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Hint. By Theorem 1.81, the closed balls in the dual are w∗-compact. On the
other hand, the norm of dual is w∗-lower-semicontinuous (Proposition 2.5) and so
the problem of best approximation has at least a solution by the Weierstrass theorem
(Theorem 2.8).

3.6 Prove that an element x̄ ∈ A is a farthest element of an element x ∈ X with
respect to the convex set A if and only if there exists an element x∗

0 ∈ X∗ such that
‖x∗

0‖ = 1 and x∗
0 (x̄ − x) = sup{‖u − x‖; u ∈ A}.

Hint. If ‖u − x‖ ≤ x∗
0 (x̄ − x) for all u ∈ A and ‖x∗

0‖ = 1, then it is obvious that
‖u − x‖ ≤ ‖x̄ − x‖ for all u ∈ A since x∗

0 (x̄ − x) ≤ ‖x̄ − x‖. Hence x̄ is a farthest
point in A for x ∈ X. Conversely, if x̄ is a farthest point, we take x∗

0 ∈ X∗ such that
‖x∗

0‖ = 1 and x∗
0 (x̄ − x) = ‖x̄ − x‖ (see (1.36)). (For other dual characterizations,

see [107].)

3.7 Let f : X → R be a proper lower-semicontinuous convex function on the lo-
cally convex space X. Prove that ∂f is surjective on the domain of its conjugate and
f ∗ is continuous on domf ∗ if and only if the set

Hf = {(
x∗, λ − x∗(x)

); (x,λ) ∈ epif, x∗ ∈ X∗}

is closed in X∗ ×R.

Hint. Take F(x, x∗) = f (x) − x∗(x), (x∗, x) ∈ X∗ × R and its corresponding
family of minimization min{f (x) − x∗(x);x ∈ X}, x∗ ∈ X∗. It is obvious that
we have the value function h(x∗) = −f ∗(x∗) and so, by Lemma 3.59, we obtain
x∗ ∈ ∂f (x̄) for an element x̄ ∈ domf , that is, the corresponding problem has the
optimal solution x̄ whenever its value is not −∞ (see the Young inequality (2.16)
and Proposition 2.25), and h is lower-semicontinuous (equivalently, f ∗ is upper-
semicontinuous) if and only if the set Hf is closed. On the other hand, by Propo-
sition 2.19(i), it follows that f ∗ is just continuous on Domh = Domf ∗. Moreover,
necessarily, domf ∗ is an open set in X∗ (see [92]).

3.5 Bibliographical Notes

3.1. The results presented in the first part of Sect. 3.1 have an algebraic cha-
racter and are direct consequences of separation properties of convex sets
in finite-dimensional spaces. The regularity condition (S) + (O) is known
in the literature as the Uzawa constraint qualification condition. In finite-
dimensional spaces many other qualification conditions are known (see the
monographs of Bazaraa and Shetty [14], El-Hodiri [40], Stoer and Witz-
gall [110], Hestenes [49]). The extension of the Kuhn–Tucker theorem on sep-
arated locally convex spaces has been given by Rockafellar [98, 99].
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For operatorial constraints, results of this type have been obtained by many
authors under different assumptions on the set B defined by (3.22) (see The-
orem 3.13). The existence of multipliers can be regarded as a consequence of
Farkas’ lemma extended in several directions by Altman [2], Arrow, Hurwicz
and Uzawa [3], and Zălinescu [120], among others.

As regards the regularity of subdifferential mappings, we refer to the works
of Ioffe and Levin [55], Kutateladze [66], Valadier [117], Zowe [123]. The
general optimality condition (3.37) is due to Pshenichny [93]. The concept
of tangent cone (Definition 3.21) given by Abadie [1] arises as a natural ex-
tension of the Kuhn–Tucker notion of feasible direction. The notion of pseu-
dotangent cone (Definition 3.23) has been used first by Guinard [46]. In The-
orem 3.30, which is due to Nagahisa and Sakawa [79], the interiority condi-
tion intAY �= ∅ is not essential. As a matter of fact, it remains true under any
conditions, which ensures the conclusion of Lemma 3.29. Theorem 3.33, due
to Guinard [46], extends some earlier results of Varaiya [119]. Other results in
this direction have been obtained by Borwein [18, 19], Bazaraa and Shetty [14],
Hiriart-Urruty [50], Ursescu [114, 115]. In the differentiable case, the follow-
ing two conditions are usually imposed: (1) x0 ∈ intA and G′

x0
is surjective;

(2) ∃x ∈ C(A,x0) such that G′
x0

∈ intC(−AY ,G(x0)). Kurcyusz (see Zowe
and Kurcyusz [124]) uses the condition G′

x0
(C(A;x0))−C(−AY ;G(x0)) = Y .

This condition is quite general if one takes into account that, if the problem ad-
mits Lagrange multipliers, then G′

x0
(C(A,x0)) − C(−AY ;G(x0)) = Y . More-

over, in several special cases, the Kurcyusz regularity condition is necessary
as happens for instance if dimY < ∞ or AY = A1 × A2 with dimA1 < ∞
and intA2 �= ∅. Other regularity conditions have been given by Bazaraa and
Goode [13], Bazaraa, Goode and Nashed [15], Halkin and Neustadt [48], Kur-
cyusz [65], Mangasarian and Fromovitz [75], Robinson [97], Tuy [112, 113].
Asymptotic Kuhn–Tucker conditions have been studied by Zlobek [122] and
the characterization of critical points on affine sets was given by Norris [81].
In the latter paper, it was proved that, if f ′

x0
�= 0, then Theorem 3.35 remains

valid without assuming that T has a closed range.
3.2. For the most part, the results presented in this section are due to Rockafellar

[99–101]. For a detailed discussion of Rockafellar’s duality theory, we refer the
reader to the recent book of Ekeland and Temam [39]. Regarding the duality
by Lagrangian in infinite-dimensional spaces, the papers of Varaiya [119], Rit-
ter [96], Arrow, Hurwicz and Uzawa [3], and Rockafellar [102] may be cited.

Duality results given in minimax form may be found in the works of
Karamardian [59], Stoer [109], and Mangasarian and Ponstein[76] for finite-
dimensional problems and in the papers of Arrow, Hurwicz and Uzawa [3],
Claesen [24], Brans and Claesen [22], Precupanu [84], in an infinite-dimen-
sional setting. As has been suggested by Moreau [78], the bilinear form which
occurs in conjugate duality theory can be replaced by a nonbilinear form
without invalidating many of the essential properties. Results of this type
have been given by Balder [11], Deumlich and Elster [30], Dolecki and Kur-
cyusz [33]. Other duality schemes have been studied by Ekeland [38], Linberg
[74], Rosinger [103], Toland [111], Rockafellar [102], Singer [106].
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In the study of the optimization problems, the condition that certain sets are
closed arises frequently. Closedness conditions (generally sufficient) are deter-
mined by the following simple result: an extended real-valued function f on
a set X has a point of minimum in X and the minimum value is finite if and
only if the set {λ ∈ R; ∃x ∈ X such that f (x) ≤ λ} is closed and proper in R.
A detailed discussion of the optimality with the aid of sets of this kind may
be found in the papers of Slyke and Wets [118], Levine and Pomerol [71–73].
For the linear case, some sufficient optimality conditions viewed as closed-
ness conditions were established by Kretschmer [64], Krabs [62], Duffin [34],
Dieter [31], Nakamura and Yamasaki [80], and for the convex case were es-
tablished by Dieter [31], Levine and Pomerol [72, 73], Arrow, Hurwicz and
Uzawa [3], Zălinescu [120, 121]. Furthermore, Levine and Pomerol proved
that, if the stability of the family of all problems obtained by linear perturba-
tions is demanded, then the closedness condition is also necessary. It must be
emphasized that this result can be generalized to a family of non-convex prob-
lems (Lemmata 3.59, 3.61 and 3.62), the convexity property being necessary
only for the equality of the values of primal and dual problems (see Precupanu
[85–88] and Precupanu and Precupanu [92]). Other sufficient optimality con-
ditions could be obtained by applying new criteria for the closedness of the
image of a closed subset by a multivalued mapping. In this context, the works
of Dieudonné [32], Ky Fan [67], Dedieu [28, 29], Gwinner [47], Asimow and
Simoson [5], Mennicken and Sergaloff [77], Ursescu [116], Beattie [16], Asi-
mow [4] and Floret [41] can be cited.

Theorems 3.70, 3.72 extend some results for linear cases due to Nakamura
and Yamasaki [80] (see Precupanu [87]). In recent years, notable results have
been obtained in the non-convex and non-smooth optimization theory. The pre-
sentation of these results is beyond the scope of this book. However, we men-
tion in this directions the works of Ekeland [37], Clarke [25, 26], Hiriart-Urruty
[50], Aubin and Clarke [7].

3.3. This section is mainly concerned with some implications of Fenchel’s duality
theorem in linear programming. In this respect, several results have been ob-
tained in the absence of the interiority condition by Ky Fan [68], Levine and
Pomerol [71], Zălinescu [120], Kallina and Williams [58], Kortanek and Soys-
ter [60], Nakamura and Yamasaki [80] and Raffin [94]. The problem P has
been previously considered by Schechter [104].

A large number of papers have been written on the best approximation, re-
garded as an optimum problem (Holmes [53], Krabs [63], Laurent [70], Balakr-
ishnan [10], Singer [105]). Dual properties of best approximation elements was
established by Garkavi [44]. The characterization of proximinality via closed-
ness condition (Theorem 3.98) is due to Precupanu [83] (see also Precupanu
and Precupanu [92]).

Many examples of convex programming problems arising in mechanics and
other fields may be found in the books of Duvaut and Lions [35], Ekeland and
Temam [39], Balakrishnan [10] and Holmes [53, 54].

The usual additivity criterion for the subdifferential is contained in Theo-
rem 3.4 (Rockafellar [98]). Other general criteria were established by Boţ and
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Wanka [20], Boţ, Grad and Wanka [21], Revalski and Théra [95], Burachik and
Jeyakumar [23]. But it is possible that the additivity of subdifferential to be true
only in certain points. This pointwise property is investigated in Sect. 3.3.3.
The characterizations contained in Theorems 3.101 and 3.102 was established
by Precupanu and Precupanu [92] (see also [91]).

The farthest point problem has been the subject of much development in
the last years. For different special results concerning the existence of farthest
points or remotal sets, we refer the reader to the papers of Asplund [6], Bala-
ganskii [8, 9], Franchetti and Papini [43], Cobzaş [27], Baronti and Papini [12],
Blatter [17], Edelstein [36], Lau [69], Panda and Kapoor [82], and the book of
Singer [107].

The characterization of remotal sets (Theorem 3.109) was established by
Precupanu [89, 90]. Also, the connection between the farthest point problem
and the best approximation problem was investigated in [90].
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21. Boţ I, Grad S, Wanka G (2009) Generalized Moreau–Rockafellar results for composed con-
vex functions. Optimization 58:917–933

22. Brans JP, Claesen G (1970) Minimax and duality for convex–concave functions. Cah Cent
étud Rech Opér 12:149–163

23. Burachik R, Jeyakumar V (2005) A dual condition for the convex subdifferential sum formula
with applications. J Convex Anal 12:279–290

24. Claesen G (1974) A characterization of the saddle points of convex–concave functions. Cah
Cent étud Rech Opér 14:127–152

25. Clarke FH (1973) Necessary conditions for nonsmooth problems in optimal control and the
calculus of variations. Thesis, Univ Washington

26. Clarke FH (1975) Generalized gradients and applications. Trans Am Math Soc 205:247–262
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Chapter 4
Convex Control Problems in Banach Spaces

This chapter is concerned with the optimal convex control problem of Bolza in a
Banach space. The main emphasis is put on the characterization of optimal arcs (the
maximum principle) as well as on the synthesis of optimal controllers. Necessary
and sufficient conditions of optimality, generalizing the classical Euler–Lagrange
equations, are obtained in Sect. 4.1 in terms of the subdifferential of the convex
cost integrand. The abstract cases of distributed and boundary controls are treated
separately. The material presented in this chapter closely parallels that exposed in
Chap. 3 and, as a matter of fact, some results given here can be obtained formally
from those of Chap. 3. However, there are significant differences and we have a
greater number of specific things that can be said or done in the case of the optimal
control problem than in the case of the constrained optimization problems consi-
dered earlier.

4.1 Distributed Optimal Control Problems

This section is devoted to the presentation of optimal control problems with convex
cost criterion and governed by linear infinite-dimensional differential systems in
Banach spaces.

4.1.1 Formulation of the Problem and Basic Assumptions

To begin with, we present the abstract settings of distributed control systems we
shall work with in the sequel. To this purpose, we frequently refer to the notation
and concepts exposed in Sect. 1.4.

From now on, E and U are two real Banach spaces with norms denoted by | · |,
‖ · ‖ and with duals E∗ and U∗, respectively. The norms of E∗ and U∗, which are
always dual norms, are again denoted by | · | and ‖ · ‖, respectively. We denote by
(·, ·) and 〈·, ·〉 the duality between E,E∗ and U,U∗, respectively.
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Consider in E the linear evolution process described by the differential equation

x′(t) = A(t)x(t) + (Bu)(t) + f (t), 0 ≤ t ≤ T , (4.1)

where x : [0, T ] → E is the unknown function and u : [0, T ] → U , f : [0, T ] → E

are given.
The function u is the input or the controller of the state system (4.1) and x is the

output or the state. System (4.1) is called a controlled system (or a state system).
Roughly speaking, the object of control theory is to modify a given dynamical sys-
tem (of the form (4.1)) by adjustment of a certain control parameter u in order to
achieve a desired behavior of the motion x. In this context, we may speak about a
control approach to the dynamical system:

x ′(t) = A(t)x(t) + f (t). (4.2)

Usually, the parameter control u is selected from a certain admissible class accord-
ing to some optimum principle.

In the following, we use also the term of control instead of controller and take
Lp(0, T ;U), 1 ≤ p ≤ ∞, as our space of controllers. The function f is fixed in
L1(0, T ;E).

As regard the operators A(t) and B , the following assumptions are in effect
throughout this section.

(A) {A(t);0 ≤ t ≤ T } generates an evolution operator U(t, s); 0 ≤ t ≤ T , on E

and the adjoint U∗(t, s) of U(t, s) is strongly continuous on Δ = {0 ≤ s ≤
t ≤ T }.

(B) B is a linear continuous operator from Lp(0, T ;U) to Lp(0, T ;E). Further-
more, B is “causal”, that is, χtBu = χtBχtu for all u ∈ Lp(0, T ;U) and a.e.
t ∈ ]0, T [.

Here, χt = 1[0,t] is the characteristic function of the interval [0, t].
By solution to (4.1) we mean, of course, a continuous function x : [0, T ] → E

which satisfies (4.1) in the mild sense (1.116), that is,

x(t) = U(t,0)x(0) +
∫ t

0
U(t, s)

(
(Bu)(s) + f (s)

)
ds, ∀t ∈ [0, T ]. (4.1′)

Perhaps the simplest and the most frequent example of such an operator B is the
(memoryless) operator

(Bu)(t) = B(t)u(t) a.e. t ∈ ]0, T [, (4.3)

where B(t) ∈ L(U,E) for all t ∈ [0, T ] and the function B(t) : [0, T ] → L(U,E) is
strongly measurable (that is, B(t)u is measurable for every u ∈ U ). Assumption (B)
is satisfied in this case if one assume that

∥
∥B(t)

∥
∥

L(U,E)
≤ η(t) a.e. t ∈ ]0, T [,
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where η ∈ L∞(0, T ). In other situations, B arises as a Volterra integral operator or
is defined by certain linear operator equations.

Certainly, (4.1) is not the most general class of distributed control systems. It is
true, however, that many important classes of system have such a representation.
In applications to partial differential equations, E is usually the space Lp(Ω) on a
bounded and open subset Ω of Rn, A(t) is an elliptic differential operator on Ω and
the forcing term B(t)u acts on all of Ω (this means that u is a distributed control).
However, other dynamical systems such as hyperbolic equations and functional dif-
ferential equations can be written in this form.

In the sequel, we assume that the spaces E and U are reflexive and strictly convex
along with their duals E∗ and U∗, and we denote by Φ : E → E∗ and Ψ : U → U∗
the duality mappings of E and U , respectively. As noticed earlier, our assumptions
on E and U imply that Φ and Ψ are single-valued and demicontinuous.

Very often, the control approach to a dynamical system of the form (4.1) can be
expressed as the problem of minimization of a certain functional (cost functional)
defined on the set of admissible controllers and the states of system (4.1). Now, we
formulate a general class of such problems.

Problem (P) Find a pair (x∗, u∗) ∈ C([0, T ];E) × Lp(0, T ;U) which minimizes
the functional

∫ T

0
L

(
t, x(t), u(t)

)
dt + �

(
x(0), x(T )

)

in the class of all the functions (x,u) ∈ C([0, T ];E) × Lp(0, T ;U) subject to (4.1)
and to the state constraint

x(t) ∈ K for all t ∈ [0, T ]. (4.4)

Here, L : (0, T ) × E × U →R
∗

and � : E × E → R
∗

are given functions and K

is a subset of E.
A pair (x∗, u∗), for which the infimum in Problem (P) is attained, is called an

optimal pair of Problem (P). The state function x∗ is then called optimal arc and the
corresponding control u∗ is called optimal controller or optimal control.

According to terminology coming from classical mechanics, the function L is
called a Lagrangian. In fact, in the special case where U = E, A(t) ≡ I , B(t) ≡ I ,
f ≡ 0, Problem (P) reduces to the classical problem of the calculus of variations,
that is,

Min

{∫ T

0
L

(
t, x(t), x ′(t)

)
dt + �

(
x(0), x(T )

)
}

.

Problem (P) is studied here under the following assumptions.

(C) The functions � and L(t), 0 ≤ t ≤ T , are lower-semicontinuous and convex on
E × E (resp. E × U ) with values in R

∗
. Furthermore, the following conditions

hold.
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(i) For all (y, v) ∈ E × U , the functions L(t, y, v) : [0, T ] → R
∗ =

]−∞,+∞] and JL
λ (t, y, v) : [0, T ] → E × U are measurable. There ex-

ists v0 ∈ Lp(0, T ;U) such that L(t,0, v0) ∈ Lp(0, T ).
(ii) There exist r0 ∈ L2(0, T ;E∗), s0 ∈ L∞(0, T ;U∗) and g0 ∈ L1(0, T ) such

that, for all (y, v) ∈ E × U , one has

L(t, y, v) ≥ (
y, r0(t)

) + 〈
v, s0(t)

〉 + g0(t) a.e. t ∈ ]0, T [. (4.5)

(iii) For each x0 ∈ E there are a neighborhood O of x0, functions α,β ∈
Lp(0, T ) and a map Σ : [0, T ] × O → U such that t → Σ(t, y(t)) is
measurable on [0, T ] for every measurable function y ∈ [0, T ] → O and

L
(
t, y,Σ(t, y)

) ≤ α(t) a.e. t ∈ ]0, T [, ∀y ∈ O, (4.6)
∥
∥Σ(t, y)

∥
∥ ≤ β(t) a.e. t ∈ ]0, T [, ∀y ∈ O. (4.7)

Here, JL
λ (t, y, v) = (yλ, vλ) ∈ E × U denotes the solution to the equation (see

(1.109))
{
Φ(yλ − y),Ψ (vλ − v)

} + λ∂L(t, yλ, vλ) � 0, (4.8)

where ∂L(t) : E × U → E∗ × U∗ is the subdifferential of L(t).
The function x ∈ C([0, T ];E) is said to be feasible for Problem (P) if there exists

u ∈ Lp(0, T ;U) such that x is a solution to (4.1) and

L(t, x,u) ∈ L1(0, T ); x(t) ∈ K for t ∈ [0, T ].
We say that an end-point pair (x0, xT ) ∈ E × E is attainable for L if there is

a feasible function x such that x(0) = x0 and x(T ) = xT . The set of all attainable
point pairs is denoted by KL. The last two assumptions concern K and KL only.

(D) K is a closed and convex subset of E. There is at least one feasible arc x such
that

(
x(0), x(T )

) ∈ Dom(�), x(t) ∈ intK for t ∈ [0, T ].
Here, Dom(�) denotes, as usual, the effective domain of �.

(E) There is at least one attainable pair (x0, xT ) ∈ KL ∩ Dom(�) such that one of
the following two conditions holds:

xT ∈ int
{
h ∈ E; (x0, h) ∈ KL

}
, (4.9)

xT ∈ int
{
h ∈ E; (x0, h) ∈ Dom(�)

}
. (4.10)

While the role played by the above hypotheses will become clear later on, some
comments here might be in order.

First, we note that condition (i) in Hypothesis (C) implies that L(t, y(t), v(t)) is
a Lebesgue measurable function of t whenever y(t) and v(t) are E-valued (resp. U -
valued) Lebesgue measurable functions. It turns out that, if E and U are separable
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Hilbert spaces, then condition (i) is satisfied if and only if L is a convex normal
integrand in the sense of the definition given in Sect. 2.2 (see Example 2.52).

We notice also that conditions (i) and (ii) of Assumption (C) imply, in particular,
that for every (x,u) ∈ L2(0, T ;E)×Lp(0, T ;U) the integral

∫ T

0 L(t, x(t), u(t))dt

is well defined (unambiguously +∞ or a real number).
If L is independent of t , then both conditions (i) and (ii) automatically hold. In

this case, r0, s0 and g0 may be taken to be constant functions.
Condition (iii), while seemingly complicated, is implied by others that are more

easily verified.
1. If L is independent of t , then (iii) is implied by the following condition.

The spaces E∗ and U are uniformly convex and the Hamiltonian function H

associated with L is finite on E × U∗. (If E∗ and U are separable, the condition
that E∗ and U are uniformly convex is no longer necessary.)

We recall that (see (2.155))

H(y,p) = sup
{
(p, y∗) − L(y, y∗); y∗ ∈ U∗}.

Let ∂H(y,p) = {−∂yH(y,p), ∂pH(y,p)} be the subdifferential of H at
(y,p) ∈ E × U∗. Since the above condition on H implies that the map ∂H :
E × U∗ → E∗ × U is monotone and, therefore, locally bounded (see Theo-
rem 1.144), we may infer that for every y0 ∈ E there exists a neighborhood of
y0 and a real constant C such that −H(y,0) ≤ C for every y ∈ O and

sup
{‖v‖; v ∈ ∂pH(y,0)

} ≤ C, ∀y ∈ O.

Then, by virtue of the conjugacy relation between L(y, ·) and H(y, ·), we have (see
Theorem 2.112)

L(y, v) = −H(y,0) for all y ∈ E and v ∈ ∂pH(y,0).

Let Γy = (Γ1y,Γ2y) ∈ E∗ × U be the element of minimum norm in ∂H(y,0),
that is, Γy = (∂H(y,0))◦.

By Proposition 1.146, (∂H)λ(y,0) → Γy strongly in E∗ × U for λ → 0 and
(∂H)λ is continuous from E × U∗ to E∗ × U . Therefore, we may conclude that,
for any measurable function y : [0, T ] → E, the function t → Γ2y(t) is measur-
able on [0, T ]. Hence, the mapping Σ(t, y) = Γ2y satisfies all the conditions re-
quired in Hypothesis (C)(iii), because, as noticed above, L(y,Γ2y) = −H(y,0)

and the function H is locally bounded. It should be emphasized that the condition
H(y,p) < +∞ for all y ∈ E and p ∈ U∗ is implied by the following growth condi-
tion:

lim‖u‖→∞
L(y,u)

‖u‖ = +∞, ∀y ∈ E. (4.11)

The rest of the condition, that is, H(y,p) > −∞ for all (y,p) ∈ E × U∗, amounts
to saying that there is no y ∈ E such that L(y, ·) = +∞. As a matter of fact, condi-
tion (iii) also implies this stringent requirement.
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2. L(t, y, v) = ϕ(t, y)+ψ(t, v); y ∈ E, v ∈ U, t ∈ [0, T ], where ϕ(t) : E →R,
ψ(t) : U → R

∗
are lower-semicontinuous and convex.

In this case, condition (iii) is obviously implied by the following one.

There exists v0 ∈ Lp(0, T ;U) such that ψ(t, v0) ∈ Lp(0, T ) and the mapping
y → ϕ(t, y) is locally bounded from E to Lp(0, T ).

3. If the spaces E and U are both finite-dimensional, then Assumption (C) is
implied by the following one.

The Hamiltonian function H(t, x, q) is (finite and) Lp-summable on [0, T ] as a
function of t for each x ∈ E and q ∈ U∗.

For the proof, the reader is referred to Rockafellar’s paper [39].
As regards Assumption (E), part (4.9), it has a severe implication on the state

system (4.1). In fact, (4.9) requires that at least for one x0 ∈ E the attainable set

ΩT =
{∫ T

0
U(T ,x)

(
(Bu)(s) + f (s)

)
ds + U(T ,0)x0; u ∈ Lp(0, T ;U)

}

has a nonempty interior in E. However, it is known (see, e.g., Balakrishnan [1],
Fattorini [26]) that intΩT = ∅ unless A(t) ≡ A generates a group on the space E

and B is onto. Thus, from the point of view of applications in infinite dimensions,
assumption (4.10) is more convenient.

We pause briefly to observe that our hypotheses on L(t) do not prevent us from
treating some apparently unmanageable cases as that of the end-point constraint

(
x(0), x(T )

) ∈ D

or control constraint

u(t) ∈ U0(t) a.e. t ∈ ]0, T [.
(Here, D is a closed, convex subset of E × E and U0(t) a family of closed and
convex subsets of U .) In fact, these situations can, implicitly, be incorporated into
Problem (P) by defining (or redefining, as the case may be)

�(x1, x2) = +∞ if (x1, x2)∈D

and

L(t, x,u) = +∞ if u∈U0(t).

Formally, also the state constraint (4.4) can be incorporated into Problem (P) by
redefining L(t) as

L(t, x,u) = +∞ if x ∈K.

However, as remarked earlier, condition (iii) in Assumption (C) precludes this si-
tuation, so that it is better to keep the state constraint explicit and separate.
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4.1.2 Existence of Optimal Arcs

The existence of an optimal arc in Problem (P) is a delicate problem under the
general assumptions presented above. The main reason is that the convex function
φ(u) = ∫ T

0 L(xu(t), u(t))dt + �(xu(0), xu(T )), where xu is given by (4.1), gen-
erally is not coercive on Lp(0, T ;U) and so, the standard existence result (Theo-
rem 2.11, for instance) is not applicable, that is why some additional hypotheses
must be imposed.

We study here the existence of an optimal pair in Problem (P) under the following
assumptions on L(t) and �.

(a) The functions L(t) and � satisfy condition (i) of Assumption (C).
(b) There exists a continuous convex, nondecreasing function ω : R+ → R

+ such
that

ω(0) = 0, lim
r→∞

ω(rp)

r
= +∞ and L(t, x,u) ≥ ω

(‖u‖p
) − β0|x| + γ (t),

where γ ∈ L(0, T ) and β0 is a real constant.
(c) There exists a nondecreasing function j : R+ →R

+ such that

lim
r→∞

j (r)

r
= +∞ and �(x1, x2) ≥ j

(|x1|
)−η|x2| for all (x1, x2) ∈ E×E,

where η is a real constant.
(d) K is a closed convex subset of E and KL ∩ Dom(�) �= ∅.

Proposition 4.1 Let E and U be reflexive Banach spaces and let Assumptions (A),
(B) and (a)–(d) hold. Then, for 1 ≤ p < ∞, Problem (P) has at least one solution,
(x,u) ∈ C([0, T ];E) × Lp(0, T ;U).

Proof We set

I (x,u) =
∫ T

0
L

(
t, x(t), u(t)

)
dt + �

(
x(0), x(T )

)
,

where (x,u) ∈ C([0, T ];E)×Lp(0, T ;U) satisfy (4.1). Since B is continuous from
Lp(0, T ;U) to L1(0, T ;E), we have

∫ T

0
|Bχtu|ds ≤ ‖B‖

(∫ T

0
‖χtu‖p ds

) 1
p

, ∀u ∈ Lp(0, T ;U),

where ‖B‖ is the operator norm of B . On the other hand, since B is “causal”,
χtB(χtu) = χtBu and, therefore,

∫ t

0

∣
∣(Bu)(s)

∣
∣ds ≤ ‖B‖

(∫ t

0

∥
∥u(s)

∥
∥p ds

) 1
p

, ∀t ∈ [0, T ].
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Then, by (4.3), we see that

∣
∣x(t)

∣
∣ ≤ C

(

1 + ∣
∣x(0)

∣
∣ +

(∫ t

0

∥
∥u(s)

∥
∥p ds

) 1
p
)

, 0 ≤ t ≤ T . (4.12)

We have, therefore,

I (x,u) =
∫ T

0
L(t, x,u)dt + �

(
x(0), x(T )

)

≥
∫ T

0
ω

(∥∥u(t)
∥
∥p)

dt − β0

∫ T

0

∣
∣x(t)

∣
∣dt +

∫ T

0
γ (t)dt

+ j
(∣
∣x(0)

∣
∣
) − η

∣
∣x(T )

∣
∣

≥ T ω

(

T −1
∫ T

0

∥
∥u(t)

∥
∥p

dt

)

− β0

∫ T

0

∣
∣x(t)

∣
∣dt

+
∫ T

0
γ (t)dt + j

(∣∣x(0)
∣
∣) − η

∣
∣x(T )

∣
∣

≥ T ω
(
T −1‖u‖p

p

) − C1‖u‖p + j
(∣
∣x(0)

∣
∣
) − C2

(∣
∣x(0)

∣
∣
) + C3. (4.13)

This implies that inf I (x,u) > −∞ and, by (d), I �≡ +∞. Thus, d = inf I (x,u) <

+∞. Let {(xn,un)} ⊂ C([0, T ];E) × Lp(0, T ;U) be such that

d ≤ I (xn,un) ≤ d + n−1. (4.14)

By (4.13) and (c), we see that {un} is bounded in Lp(0, T ;U) and {xn(0)} is
bounded in E. Hence, {xn} is bounded in C([0, T ];E) and {un} is weakly com-
pact in Lp(0, T ;U) if p > 1. If p = 1, for every measurable subset Ω of [0, T ],
we have

d + 1 ≥ d + n−1 ≥ I (xn,un)

≥
∫ T

0
ω

(∥∥un(s)
∥
∥)

ds − β0

∫ T

0

∣
∣xn(s)

∣
∣ds

+
∫ T

0
γ (t)dt + j

(∣
∣xn(0)

∣
∣
) − η

∣
∣xn(T )

∣
∣

≥
∫

Ω

ω
(∥∥un(s)

∥
∥)

ds + C.

Hence, by the Jensen inequality,

|d + 1 − C| ≥
∫

Ω

ω
(∥
∥un(s)

∥
∥
)

ds ≥ m(Ω)ω
(
m(Ω)

)−1
∫

Ω

∥
∥un(s)

∥
∥ds
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and, therefore,
∫

Ω

∥
∥un(s)

∥
∥ds ≤ sup

{

λ ≥ 0; m(Ω)ω

(
λ

m(Ω)

)

≤ |d + 1 − C|
}

. (4.15)

We may conclude that the family {∫
Ω

‖un(s)‖ds;Ω ⊂ [0, T ]} is equibounded and
equicontinuous. Thus, by the Dunford–Pettis criterion in L1(0, T ;U) (see Theo-
rem 1.121)), {un} is weakly compact in L1(0, T ;U). Hence, without loss of gener-
ality, we may assume that there exists some u ∈ Lp(0, T ;U) such that

un → u weakly in Lp(0, T ;U).

Since {xn} are uniformly bounded on [0, T ] and E is reflexive, we may assume
that xn(0) → x1 weakly in E and, by (4.1′), we see that

xn(t) → x(t) = U(t,0)x1 +
∫ t

0
U(t, s)

(
(Bu)(s) + f (s)

)
ds

weakly in E for every t ∈ [0, T ]. Since � is weakly lower-semicontinuous on E ×E

(because it is convex and lower-semicontinuous ), we have

lim inf
n→∞ �

(
xn(0), xn(T )

) ≥ �
(
x(0), x(T )

)
. (4.16)

Next, our assumption on L(t) implies (see Proposition 2.19) that the function
(y, v) → ∫ T

0 L(t, y(t), v(t))dt is convex and lower-semicontinuous on L1(0, T ;E)

× L1(0, T ;U). Hence, this function is weakly lower-semicontinuous, so that we
have

lim inf
n→∞

∫ T

0
L(t, xn,un)dt ≥

∫ T

0
L(t, x,u)dt.

Along with (4.13) and (4.16), the latter implies that I (x,u) = d , thereby completing
the proof. �

Remark 4.2 From the preceding proof, it is apparent that, for p > 1, the condition
on ω in assumption (b) can be weakened to

lim inf
r→∞

ω(rp)

r
> 0.

Notice also that the weak lower-semicontinuity of I on L1(0, T ;E) × L1(0, T ;U)

was essential for the proof of the existence. Hence, without the convexity of L(t, ·, ·)
(or of L(t, y, ·) if the map u → y is compact), there is little motivation to study
Problem (P) (since it might have no solution). However, using the Ekeland vari-
ational principle (see Theorem 2.43 and Corollaries 3.74, 3.75), one might show
even in this case that, for each ε > 0, there is an approximation minimum,

uε = arg inf

{

I
(
xu,u

) + ε

(∫ T

0
|u − uε|p dt

) 1
p
}

(see Remark 2.54).
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Remark 4.3 Proposition 1.12 is a particular case of a general result established in
[38] by Popescu. For other sharp existence results in Problem (P), we refer the reader
to the works of Rockafellar [43], Ioffe [29, 30], Olech [36, 37].

4.1.3 The Maximum Principle

We present here some optimality theorems of the maximum principle type for Prob-
lem (P). The main theorem of this section, Theorem 4.5 below, characterizes the
optimal arcs of Problem (P) as generalized solutions to a certain Euler–Lagrange
system associated to Problem (P).

We denote by K the closed convex subset of C([0, T ];E) defined by

K = {
x ∈ C

([0, T ];E); x(t) ∈ K, ∀t ∈ [0, T ]}.

Given a function w : [0, T ] → E∗ of bounded variation on [0, T ], we denote, as
usual (see Sect. 1.3.3), by dw the E∗-valued Stieltjes–Lebesgue measure on [0, T ]
corresponding to w.

Definition 4.4 We say that a pair (x∗, u∗) ∈ C([0, T ];E)×Lp(0, T ;U) is extremal
for Problem (P) if there exist the functions q ∈ L1(0, T ;E∗), w ∈ BV([0, T ];E∗)
and p∗ : [0, T ] → E∗ satisfying with x∗, u∗ the equations

x∗(t) = U(t,0)x∗(0) +
∫ t

0
U(t, s)

(
(Bu∗)(s) + f (s)

)
ds, 0 ≤ t ≤ T , (4.17)

p∗(t) = U∗(T , t)p∗
T −

∫ T

t

U∗(s, t)q(s)ds −
∫ T

t

U∗(s, t)dw(s), (4.18)

∫ T

0

(
dw(t), x∗(t) − y(t)

) ≥ 0 for all y ∈ K , (4.19)

(
q(t), (B∗p∗)(t)

) ∈ ∂L
(
t, x∗(t), u∗(t)

)
a.e. t ∈ ]0, T [, (4.20)

(
p∗(0),−p∗

T

) ∈ ∂�
(
x∗(0), x∗(T )

)
. (4.21)

Here,
∫ T

t
U∗(s, t)dw(s) stands for the Riemann–Stieltjes integral of U∗(·, t) :

[t, T ] → L(E∗,E∗) with respect to the function of bounded variation w : [t, T ] →
E∗ (see Sect. 1.3.3), U∗ is the adjoint of U and B∗ is the adjoint of B .

Such a function p∗ is called a dual extremal arc of Problem (P).
Let M(0, T ;E∗) be the dual space of C([0, T ];E) and let μw ∈ M(0, T ;E∗) be

defined by

μw(x) =
∫ T

0
(dw,x), x ∈ C

([0, T ];E)
.
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Then, (4.19) may be rewritten as

μw ∈ N (x∗,K ),

where N (x∗,K ) is the cone of normals to K at x∗, that is,

N (x∗,K ) = {
μ ∈ M(0, T ;E∗); μ(x∗ − y) ≥ 0, ∀y ∈ K

}
.

By analogy with (4.1), we may say that the dual extremal arc p∗ is a solution to
the differential equation

(p∗)′ + A∗(t)p∗ = q + dw on [0, T ], p∗(T ) = pT ,

but the exact sense of this equation is given by (4.18).
Note that, in contrast to the solution to (4.1), p∗(t) does not need to be contin-

uous, unless K = E (in this case, N (x∗,K) = {0} and w is constant on [0, T ]).
However, since the function t → ∫ T

t
U∗(s, t)dw(s) is of bounded variation on

[0, T ], the function p∗ arises under the form p1 +p2, where p1(t) = U∗(T , t)p∗
T −

∫ T

t
U∗(s, t)q(s)ds is continuous and p2 is of bounded variation on [0, T ]. Hence,

p∗(t + 0) and p∗(t − 0) exist at every point t ∈ [0, T ] (we make the convention
p∗(0 − 0) = p∗(0) and p∗(T + 0) = p∗(T )).

We see, by (4.18), that the points of discontinuity for p∗ are just the points t ,
where w is discontinuous and, as we shall see later, these points belong to the set of
all t for which x∗(t) lies on the boundary of K . As a matter of fact, we may take the
function continuous from the left on ]0, T ] and regard p∗

T as p∗(T ). Parenthetically,
we note that in terms of the Hamiltonian function H(t) associated to L(t), (4.20)
can be written in the classical form (see formula (2.157))

q(t) ∈ −∂xH
(
t, x∗(t), (B∗p∗)(t)

)
,

u∗(t) ∈ ∂pH
(
t, x∗(t), (B∗p∗)(t)

)
.

(4.22)

Equations (4.17), (4.18), (4.19), and (4.22) represent the Hamiltonian form of the
generalized Euler–Lagrange equations. If K = E, then (4.17)–(4.20) can be written
as

x∗′(t) − A(t)x∗(t) ∈ B∂pH
(
t, x∗(t), (B∗p∗)(t)

) + f (t),

p∗′(t) + A∗(t)p∗(t) ∈ −∂xH
(
t, x∗(t), (B∗p∗)(t)

)
,

(4.23)

which resemble the classical Hamiltonian equations.
Observe that the set ∂pH(t, x∗, (B∗p∗)) consists of the control vectors u ∈ U for

which the supremum of {(u, (B∗p∗)(t)) − L(t, x∗, u)} is attained. This clarifies the
equivalence between the above optimality conditions and the well-known maximum
principle.

The main result is the following theorem.

Theorem 4.5 Let Assumptions (A), (B), (C), (D) and (E) be satisfied, where 2 ≤
p < ∞, the spaces E and U are reflexive and strictly convex together with their
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duals and E is separable. Then, the pair (x∗, u∗) ∈ C([0, T ];E) × Lp(0, T ;U) is
optimal in Problem (P) if and only if it is extremal. If, in addition, B is given by (4.3),
then the function q in (4.18) belongs to Lp(0, T ;E∗).

Let ẇ ∈ L1(0, T ;E∗) be the weak derivative of w, and ws ∈ BV([0, T ];E∗) be
the singular part of the function w, that is,

w(t) =
∫ t

0
ẇ ds + ws(t), 0 ≤ t ≤ T . (4.24)

As noticed before, in Sect. 1.3.3 (see (1.88)), the measure dws is the singular part
of dw.

Let us denote by NK(x) ⊂ E∗ the cone of normals to K at x, that is, NK(x) =
∂IK(x). In terms of w and ws , Theorem 4.5 can be made more precise as follows.

Theorem 4.6 Under the assumptions of Theorem 4.5, the pair (x∗, u∗) is opti-
mal in Problem (P) if and only if there exist functions q ∈ L1(0, T ;E∗), w ∈
BV([0, T ];E∗), and p∗ satisfying along with x∗, u∗, (4.17), (4.18), (4.20), (4.21),
and

ẇ(t) ∈ NK

(
x∗(t)

)
a.e. t ∈ ]0, T [, (4.25)

dws ∈ N (x∗,K ). (4.26)

If B is defined by (4.3), then q ∈ Lp(0, T ;E∗).

Remark 4.7 The condition that E is separable is not absolutely necessary, but it
has been imposed in order to simplify the proof. Anyway, as we see in the proof of
Theorem 4.5 in the unconstrained case K = E it is obviously superfluous.

It is interesting that, by Theorem 4.5, it follows under certain circumstances
that the optimal controllers u∗ are continuous functions, though control functions
u which are merely p-summable have been admitted. For instance, if K = E, B is
given by (4.3) with B(t) continuous in t and ∂pH is single-valued and continuous,
then we see by (4.22) that u∗ is continuous on [0, T ]. This is a “smoothing effect”
of optimality on the control input. Other information on the optimal controller u∗ is
contained in (4.22).

Now, let us consider the particular case in which E = H is a Hilbert space and
{A(t);0 ≤ t ≤ T } is a family of linear continuous operators form V to V ′ satisfying
conditions (j), (jj) and (jjj) of Proposition 1.149.

Here, V is a real Hilbert space continuously and densely imbedded in H and V ′
is its dual (V ⊂ H ⊂ V ′).

We further assume that B is defined by (4.3), f ∈ L2(0, T ;H) and p = 2.
Then, by Proposition 1.149, the solution x to (4.1) belongs to the space

W(0, T ) = {
x ∈ L2(0, T ;V ); x ′ ∈ L2(0, T ;V ′)

}
. (4.27)
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Next, if K = H , then also the dual arc p∗ belongs to W(0, T ) and the extremality
system (4.17), (4.18) can be written in the following more precise form:

x∗′(t) = A(t)x∗(t) + B(t)u∗(t) + f (t) a.e. ∈ ]0, T [,
p∗′(t) = −A∗(t)p∗(t) + q(t).

(4.28)

This functional setting is appropriate to describe the distributed control systems
of parabolic type, and more will be said about it in Sect. 4.1.9.

Another situation in which x∗ and p∗ are strong solutions to (4.17) and (4.18)
is that when A(t) ≡ A is the infinitesimal generator of an analytic semigroup and
x∗(0) ∈ D(A), p∗(T ) ∈ D(A∗) (see Proposition 1.148).

4.1.4 Proof of Theorem 4.5

It is convenient to reformulate Problem (P) as that of minimizing a certain functional
F over the space C([0, T ];E)×Lp(0, T ;U) where no constraints appear explicitly.
Let H be the subset of C([0, T ];E) × Lp(0, T ;U) defined by

H = {
(y, v) ∈ C

([0, T ];E) × Lp(0, T ;U); y ′ = A(t)y + Bv + f on [0, T ]}.
(4.29)

It is elementary that H is a closed convex subset of C([0, T ];E) × Lp(0, T ;U).
Now, let F : C([0, T ];E) × Lp(0, T ;U) → R

∗
be the convex function defined by

F(y, v) =
{∫ T

0 L(t, y(t), v(t))dt + �(y(0), y(T )), if (y, v) ∈ H , y ∈ K ,

+∞, otherwise.
(4.30)

We note that Assumption (C) (part (i), (ii)) guarantees that the integral∫ T

0 L(t, y(t), v(t))dt is well defined (that is, nowhere −∞) for all (y, v) ∈ H .
Moreover, F �≡ +∞ by Assumption (E) and F is convex and lower-semicontinuous
on c([0, T ];E) × Lp(0, T ;U). The latter is easily deduced from the Fatou Lemma
and condition (4.4) in Assumption (C) (see Propositions 2.53, 2.55).

In terms of the function F defined above, we can express the control problem (P)
as

Min F(y, v) over all (y, v) ∈ C
([0, T ];E) × Lp(0, T ;U). (4.31)

If we denote by J (v, y0) the solution to y′ = A(t)y + Bv + f , y(0) = y0, and set
J (v, y0) = F(y(v, y0), v), we can rewrite (4.31) as

Min
{
J (v, y0); v ∈ Lp(0, T ;U), y0 ∈ F

}
(4.32)

and so (x∗, u∗) is optimal in Problem (P) if and only if

∂J
(
u∗, x∗(0)

) � 0.
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Thus, the maximum principle formally reduces to the exact description of the subd-
ifferential

∂J : Lp(0, T ;U) × E → Lq(0, T ;U∗) × E∗.

However, since the general rules presented in Chap. 3 to calculate subdifferentials
are not applicable to the present situation, we proceed in a direct way with the anal-
ysis of the minimization problem (4.31).

Now, we prove sufficiency of the extremality conditions (4.17)–(4.21) for op-
timality. Let x∗, u∗,p∗ and q ∈ L1(0, T ;E∗), w ∈ BV([0, T ];E∗) satisfy (4.17)–
(4.21).

By (4.20) and the definition of the “subgradient”, we have for all (x,u) ∈
C([0, T ];E) × Lp(0, T ;U)

L
(
t, x∗(t), u∗(t)

) ≤ L
(
t, x(t), u(t)

) + (
q(t), x∗(t) − x(t)

)

+ 〈
(B∗p∗)(t), u∗(t) − u(t)

〉
a.e. t ∈ ]0, T [

and, by (4.21),

�
(
x∗(0), x∗(T )

) ≤ �
(
x(0), x(T )

)+(
p∗(0), x∗(0)−x(0)

)−(
p∗(T ), x∗(T )−x(T )

)
.

Hence,

F(x∗, u∗) ≤ F(x,u) +
∫ T

0

((
q(t), x∗(t) − x(t)

) + (
p∗(t), (Bu∗)(t) − (Bu)(t)

))
dt

+ (
p∗(0), x∗(0) − x(0)

) − (
p∗(T ), x∗(T ) − x(T )

)
, (4.33)

for all (x,u) ∈ H and x ∈ K .
Now, using (4.1′) and (4.17), we have

∫ T

0

(
q(t), x∗(t)−x(t)

)
dt =

(∫ T

0
U∗(t,0)q(t)dt, x∗(0)−x(0)

)

+
∫ T

0

(

q(t),

∫ t

0
U(t, s)

(
(Bu∗)(s) − (Bu)(s)

)
ds

)

dt.

Interchanging the order of integration, which is easily justified by the hypotheses
and Fubini’s theorem, yields

∫ T

0

(
q(t), x∗(t) − x(t)

)
dt

=
(

x∗(0) − x(0),

∫ T

0
U∗(t,0)q(t)dt

)

+
∫ T

0

(

(Bu∗ − Bu)(s),

∫ T

0
U∗(t, s)q(t)dt

)

ds
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= (
x∗(0) − x(0),U∗(T ,0)p∗(T )

) − (
x∗(0) − x(0),p∗(0)

)

−
(

x∗(0) − x(0),

∫ T

0
U∗(s,0)dw(s)

)

−
∫ T

0

(
(Bu∗ − Bu)(s),p∗(s)

)
ds

−
∫ T

0

(

(Bu∗ − Bu)(s),

∫ T

0
U∗(t, s)dw(t)

)

ds

+
∫ T

0

(
(Bu∗ − Bu)(s),U∗(T , s)p∗(T )

)
ds. (4.34)

Here, we have also used (4.18). Then, by Proposition 1.125, we have

∫ T

0

(

B(u∗ − u)(s),

∫ T

s

U∗(t, s)dw(t)

)

=
∫ T

0

(

dw(t),

∫ t

0
U(t, s)B(u∗ − u)(s)ds

)

=
∫ T

0

(
dw(t), x∗(t) − x(t)

) −
∫ T

0

(
dw(t),U(t,0)

(
x∗(0) − x(0)

))
,

while, by (4.19), we have

∫ T

0
(dw,x∗ − x) ≥ 0 for all x ∈ K .

Along with (4.33) and (4.34), the latter yields

F(x∗, u∗) ≤ F(x,u) for all (x,u) ∈ H , x ∈ K ,

as claimed.

Necessity The proof of necessity is more complicated and it is divided into several
steps. The underlying idea behind the method to be used below is to approximate
a solution (x∗, u∗) to Problem (P) by a sequence {(xλ,uλ)} consisting of optimal
pairs in a family of smooth optimal control problems. Roughly speaking, we use a
variant of the penalty functions method mentioned earlier.

Before proceeding further, we must introduce some notation and give a brief
account of the background required.

We denote by Lλ, �λ and ϕλ the regularizations of L, � and ϕ = IK (see (2.58)).
In other words,

Lλ(t, x,u) = inf
{
(2λ)−1(|y − x|2 + ‖v − u‖2) + L(t, y, v); (y, v) ∈ E × U

}
,

λ > 0,
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�λ(x1, x2) = inf
{
(2λ)−1(|x1 − y1|2 + |x2 − y2|2

) + �(y1, y2); y1, y2 ∈ E
}

and

ϕλ(x) = inf
{
(2λ)−1|x − y|2; y ∈ K

}
.

We notice that Hypothesis (C), part (ii), when used in equalities (see Theorem 2.58)

Lλ(t, x,u) = L
(
t, J L

λ (t, x,u)
) + λ

2

∥
∥∂Lλ(t, x,u)

∥
∥2

E∗×U∗ (4.35)

yields

Lλ(t, x,u) ≥ (
x, r0(t)

) + 〈
u, s0(t)

〉 + ξ(t) + Mλ
(
1 + ∣

∣r0(t)
∣
∣2)

,

∀(x,u) ∈ E × U, λ > 0, (4.36)

where r0 ∈ L2(0, T ;E∗), s0 ∈ L∞(0, T ;U∗), ξ ∈ L1(0, T ) and M is a positive con-
stant independent of λ. Likewise, we have

�λ(x1, x2) ≥ (x1, x
∗
1 ) + (x2, x

∗
2 ) + M1, for all x1, x2 ∈ E, (4.37)

where x∗
1 , x∗

2 are some elements of E∗. In the sequel, we use the same symbol I to
designate the identity operator in E, U and E × U .

We note that Assumption (C), part (i), implies that, for every {y, v} ∈ E ×U , the
function ∂Lλ(t, y, v) is measurable on [0, T ]. We see, by (4.35), that, for all (y, v) ∈
E × U , Lλ(t, y, v) is measurable on [0, T ]. Finally, we may conclude that, for any
pair of measurable functions y : [0, T ] → E and v : [0, T ] → U , Lλ(t, y(t), v(t)) is
measurable on [0, T ].

Moreover, (y, v) → L(t, y, v) is Gâteaux differentiable and its gradient ∇Lλ is
just the subdifferential ∂Lλ; similarly for �λ and ϕλ.

Having summarized these elementary properties of Lλ and �λ, we establish now
the first auxiliary result of the proof.

Let (x∗, u∗) ∈ C([0, T ];E)×Lp(0, T ;U) be a fixed optimal pair of Problem (P).

Lemma 4.8 For every λ > 0, there exist (xλ,uλ) ∈ H , qλ ∈ Lp(0, T ;E∗) and
pλ ∈ C([0, T ];E∗) satisfying the equations

xλ(t) = U(t,0)xλ(0) +
∫ t

0
U(t, s)

(
(Buλ)(s) + f (s)

)
ds, 0 ≤ t ≤ T , (4.38)

pλ(t) = U∗(T , t)pλ(T ) −
∫ T

t

U∗(s, t)
(
qλ + ∂ϕλ(xλ)

)
(s)ds, (4.39)

(B∗pλ)(t) + Ψ
(
u∗(t) − uλ(t)

)∥
∥u∗(t) − uλ(t)

∥
∥p−2

= ∂uLλ

(
t, xλ(t), uλ(t)

)
a.e. t ∈ ]0, T [, (4.40)

qλ(t) = ∂xLλ

(
t, xλ(t), uλ(t)

)
a.e. t ∈ ]0, T [, (4.41)

{
pλ(0) + Φ

(
x∗(0) − xλ(0)

)
,−pλ(T )

} = ∂�λ

(
xλ(0), xλ(T )

)
. (4.42)
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Furthermore, for λ → 0,

uλ → u∗ strongly in Lp(0, T ;U), (4.43)

xλ → x∗ in C
([0, T ];E)

. (4.44)

Proof Let Fλ : Lp(0, T ;U) × E → ]−∞,+∞] be the convex function defined by

Fλ(u,h) =
∫ T

0

(

Lλ

(
t, x(t), u(t)

) + ϕλ

(
x(t)

) + 1

p

∥
∥u(t) − u∗(t)

∥
∥p

)

dt

+ �λ

(
x(0), x(T )

) + 1

2

∣
∣x(0) − x∗(0)

∣
∣2

, u ∈ Lp(0, T ;U), h ∈ E,

wherein

x(t) = U(t,0)h +
∫ t

0
U(t, s)

(
(Bu)(s) + f (s)

)
ds, t ∈ [0, T ]. (4.45)

In particular, it follows by Assumption (C), part (ii), that there exists v0 ∈
Lp(0, T ;U) such that L(t,0, v0) ∈ Lp(0, T ). Since, by the definition of Lλ,

Lλ(t, x,u) ≤ (2λ)−1(|x|2 + ‖u − v0‖2) + L(t,0, v0),

we may infer that −∞ < Fλ < +∞.
Moreover, we may infer by Proposition 1.8 that Fλ attains its infimum on

Lp(0, T ;U) × E in a unique point (uλ,hλ) (unique because Fλ is strictly convex).
We set

xλ(t) = U(t,0)hλ +
∫ t

0
U(t, s)

(
(Buλ)(s) + f (s)

)
ds

and define

pλ(t) = U∗(T , t)pT
λ −

∫ T

t

U∗(s, t)
(
∂xLλ

(
s, xλ(s), uλ(s)

) + ∂ϕλ

(
xλ(s)

))
ds,

(4.46)
wherein

pT
λ = pλ(T ) = −y2

λ; (
y1
λ, y2

λ

) = ∂�λ

(
xλ(0), xλ(T )

)
.

Since (uλ,hλ) is a minimum point of Fλ and the functions ‖ · ‖, Lλ, �λ and ϕλ

are Gâteaux differentiable, we have

∫ T

0

((
∂xLλ(t, xλ,uλ), z

) + 〈
∂uLλ(t, xλ,uλ), v

〉

+ (
∂ϕλ(xλ), z

) + 〈
Ψ (uλ − u∗)‖uλ − u∗‖p−2, v

〉)
dt

+ ((
∂�λ

(
xλ(0), xλ(T )

)
,
(
z(0), z(T )

)))

+ (
Φ

(
xλ(0) − x∗(0)

)
, z(0)

) = 0, (4.47)
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for all v ∈ Lp(0, T ;U), where ((·, ·)) is the duality between E × E and E∗ × E∗,
while z ∈ C([0, T ];E) is a solution to

z′ = A(t)z + (Bv)(t), 0 ≤ t ≤ T ,

that is,

z(t) = z(0) +
∫ t

0
U(t, s)(Bv)(s)ds, 0 ≤ t ≤ T .

Using once again (4.35), we obtain the estimate (without loss of generality, we
may assume that L ≥ 0)

λ
∥
∥∂Lλ(t, x,u)

∥
∥2

E∗×U∗ ≤ λ−1(|x|2 + ‖u − v0‖2) + 2L(t,0, v0),

for all (x,u) ∈ E × U, (4.48)

where v0 ∈ Lp(0, T ;U) has been chosen as above.
This implies that ∂Lλ(xλ,uλ) ∈ Lp(0, T ;E∗) × Lp(0, T ;U∗), and this justi-

fies (4.47).
Now, in (4.47) we substitute for ∂uLλ(t, xλ,uλ), ∂xL(t, xλ,uλ) and ∂ϕλ(xλ) by

their expressions (4.40), (4.41), and (4.42). By straightforward calculation, we find
that

∫ T

0

〈
∂uLλ(t, xλ,uλ) − B∗pλ + Ψ (uλ − u∗)‖uλ − u∗‖p−2, v

〉
dt

+ (
y1
λ − pλ(0) + Φ

(
xλ(0) − x∗(0)

)
, z(0)

) = 0.

Since v ∈ Lp(0, T ;U) and z(0) ∈ E were arbitrary, we find (4.40) and (4.42), as
claimed.

In particular, it follows, by Assumption (E), that there exists at least one feasible
pair (x0, u0) ∈ C([0, T ];E) × Lp(0, T ;U). Then, by the inequality

Fλ(xλ,uλ) ≤ Fλ(x0, u0) ≤ C, λ > 0, (4.49)

we may infer that {uλ} is bounded in Lp(0, T ;U) and {xλ(0)} is bounded in E

for λ → 0. (Here, we have also used inequalities (4.36) and (4.37).) Thus, taking
weakly convergent subsequences, we may assume, for λ → 0, that

uλ → u1 weakly in Lp(0, T ;U),

xλ(0) → x0 weakly in E.
(4.50)

Keeping in mind (4.38), we see that

xλ(t) → x1(t) = U(t,0)x0 +
∫ t

0
U(t, s)

((
Bu1)(s) + f (s)

)
ds (4.51)

weakly in E for t ∈ [0, T ].
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The well-known equality (see Theorem 2.58)

ϕλ(xλ) = λ

2

∣
∣∂ϕλ(xλ)

∣
∣2 + ϕ

(
J

ϕ
λ xλ

) ≥ λ

2

∣
∣∂ϕλ(xλ)

∣
∣2

implies that {λ|∂ϕλ(xλ)|2} is bounded in L1(0, T ).
Since ∂ϕλ(xλ) = λ−1Φ(xλ − J

ϕ
λ xλ), this implies that xλ − J

ϕ
λ xλ → 0 in

L1(0, T ;E). Thus, on some subsequence, xλ(t) − JL
λ (t) → 0 a.e. t ∈ ]0, T [. Since

J
ϕ
λ xλ(t) ∈ K , for every t ∈ [0, T ] we may infer by (4.51) that x1(t) ∈ K , ∀t ∈ [0, T ].

On the other hand, by (4.35), we see that {λ‖∂Lλ(t, xλ,uλ)‖2
E∗×U∗ } is bounded in

L1(0, T ) and, therefore,

lim
λ→0

(
(xλ,uλ) − JL

λ (t, xλ,uλ)
) = 0 strongly in L2(0, T ;E × U)

and

lim inf
λ→0

∫ T

0
Lλ

(
t, xλ(t), uλ(t)

)
dt ≥ lim inf

λ→0

∫ T

0
L

(
t, J L

λ

(
t, xλ(t), uλ(t)

))
dt.

On the other hand, it follows by (4.50) and (4.51) that

lim
λ→0

JL
λ (t, xλ,uλ) = (

u1, x1) weakly in L2(0, T ;E × U).

Since the convex function (y, v) → ∫ T

0 L(t, y, v)dt is weakly lower-semicontinuous
on L2(0, T ;E × U) (because it is convex and lower-semicontinuous), we have

lim inf
λ→0

∫ T

0
Lλ

(
t, xλ(t), uλ(t)

)
dt ≥

∫ T

0
L

(
t, x1(t), u1(t)

)
dt. (4.52)

Similarly, from the equality

�λ(x1, x2) = λ

2

∥
∥∂�λ(x1, x2)

∥
∥2

E∗×E∗ + �
(
J �

λ (x1, x2)
)

we find by the same reasoning that {(xλ(0), xλ(T )) − J �
λ (xλ(0), xλ(T ))} → 0 in

E × E and, therefore,

lim inf
λ→0

�λ

(
xλ(0), xλ(T )

) ≥ �
(
x1(0), x1(T )

)
. (4.53)

By J �
λ (x1, x2) we have denoted, as usual, the solution (y1, y2) to the equation

(Φ(y1 − x1),Φ(y2 − x2)) + λ∂�(y1, y2) � 0 (see Sect. 2.2.3).
By (4.52) and (4.53), we have

lim inf
λ→0

∫ T

0
Lλ(t, xλ,uλ)dt + �λ

(
xλ(0), xλ(T )

)

≥
∫ T

0
L

(
t, x1, u1)dt + �

(
x1(0), x2(T )

)
.
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On the other hand, we have

Fλ(xλ,uλ) ≤ Fλ(x
∗, u∗) ≤

∫ T

0
L(t, x∗, u∗)dt + �

(
x∗(0 < x∗(T )

))

because Lλ ≤ L and �λ ≤ � for all λ > 0.
Since F(x∗, u∗) ≤ F(x1, u1), we may infer that

lim
λ→0

∫ T

0
‖uλ − u∗‖p dt = 0.

Hence, u1 = u∗, x1 = x∗, and by (4.51), (4.44) follows, thereby completing the
proof of Lemma 4.8. �

For the sake of simplicity, in the subsequent proof we take f ≡ 0, throughout.

Lemma 4.9 There exists C > 0 independent of λ such that
∣
∣pλ(T )

∣
∣ ≤ C. (4.54)

Proof We define on E × E the function

Λ(h1, h2) = inf
{
G(x,u); (x,u) ∈ H , x(0) = h1,

x(T ) = h2, x(t) ∈ K for t ∈ [0, T ]},
where

G(x,u) =
∫ T

0

(
L(t, x,u) + p−1‖u − u∗‖p

)
dt + 1

2

∣
∣x(0) − x∗(0)

∣
∣2

.

We have already seen that the function (x,u) → ∫ T

0 L(t, x,u)dt is convex and
lower-semicontinuous on L1(0, T ;E) × Lp(0, T ;U). Since G is also coercive
on H , we may infer that, for every choice of h1, h2, the infimum defining Λ(h1, h2)

is attained. This fact implies by a standard argument involving the convexity and
the weak lower-semicontinuity of the convex integrand L that Λ is convex and
lower-semicontinuous on E × E. Furthermore, the effective domain D(Λ) of Λ

is the very set KL defined in Sect. 4.1.1. To prove estimate (4.54), we use As-
sumption (E). First, let us suppose that condition (4.9) is satisfied. Then there exists
y ∈ C([0, T ];E) such that �(y(0), y(T )) < +∞ and y(T ) ∈ intD(Λ(y(0), ·)). This
implies that the function h → Λ(y(0), h) is locally bounded at h = y(T ) and, there-
fore, there exist some positive constants ρ and C such that

Λ
(
y(0), y(T ) + ρh

) ≤ C for all h ∈ E, |h| = 1. (4.55)

Now, let (z, v) ∈ H be such that z ∈ K , z(0) = y(0) and z(T ) = y(T )+ρh, where
h is fixed and |h| = 1. Again, using (4.38)–(4.41), we find, after some calculations,
(
pλ(T ), xλ(T ) − y(T ) − ρh

) − (
pλ(0), xλ(0) − y(0)

) ≥ Gλ(xλ,uλ) − Gλ(z, v),
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where

Gλ(x,u) =
∫ T

0

(
Lλ(t, x,u) + ϕλ(x) + p−1‖u − u∗‖p

)
dt + 1

2

∣
∣x(0) − x∗(0)

∣
∣2

.

Inasmuch as (y(0), y(T ) + ρh) ∈ KL, we may choose the pair (z, v) in such a way
that G(z, v) = Λ(y(0), y(T ) + ρh). Since Gλ(z, v) ≤ G(z, v), by (4.55) we may
infer that

Gλ(z, v) ≤ C

and, therefore,

(
pλ(T ), xλ(T ) − y(T ) − ρh

) − (
pλ(0), xλ(0) − y(0)

) ≥ C, (4.56)

for all h ∈ E, |h| = 1. (We denote by C several positive constants independent
of λ.) To obtain the latter, we have also used the fact, already noticed in the proof of
Lemma 4.8, that Fλ(xλ,uλ) and, consequently, Gλ(xλ,uλ) are bounded from below
with respect to λ.

Since, by (4.42) and the definition of ∂�λ,

(
pλ(0), xλ(0) − y(0)

) − (
pλ(T ), xλ(T ) − y(T )

)

≥ �λ

(
xλ(0), xλ(T )

) − �λ

(
y(0), y(T )

)

+ 1

2

(∣
∣xλ(0) − x∗(0)

∣
∣2 − ∣

∣y(0) − x∗(0)
∣
∣2)

,

while, by (4.37), �λ(xλ(0), xλ(T )) is bounded from below and �λ(y(0), y(T )) ≤
�(y(0), y(T )) < +∞, we see by (4.56) that pλ(T ) is bounded in E∗.

Now, assume that condition (4.10) is satisfied. In other words, there is (y, v) ∈ K ,
y ∈ K , such that (y(0), y(T )) ∈ KL ∩ Dom(�) and y(T ) ∈ int{h ∈ E; (y(0), h) ∈
Dom(�)}. Hence, there exist some positive constants ρ and C such that (see Propo-
sition 2.16)

�
(
y(0), y(T ) + ρh

) ≤ C for all h ∈ E, |h| = 1.

Next, by (4.42) we have

(
pλ(0), xλ(0) − y(0)

) − (
pλ(T ), xλ(T ) − y(T ) − ρh

)

≥ �λ

(
xλ(0), xλ(T )

) − �λ

(
y(0), y(T ) + ρh

)

+ 1

2

(∣
∣xλ(0) − x∗(0)

∣
∣2 − ∣

∣y(0) − x∗(0)
∣
∣2)

.

Now, using once again (4.38)–(4.41), we find that

(
pλ(T ), xλ(T ) − y(T )

) − (
pλ(0), xλ(0) − y(0)

) ≥ Gλ(xλ,uλ) − Gλ(y, v) ≥ C

for all λ > 0.
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Hence,

ρ
(
pλ(T ),h

) ≤ C for all λ > 0, |h| = 1,

wherein C is independent of λ and h. We have, therefore, proved the boundedness
of {|pλ(T )|} in both situations, thereby completing the proof of Lemma 4.9. �

Now, we continue the proof of Theorem 4.5 with further a priori estimates on
pλ. By Assumption (D), there exists at least one pair (x0, u0) ∈ K such that x0(t) ∈
intK for t ∈ [0, T ], L(t, x0, u0) ∈ L1(0, T ) and �(x0(0), x0(T )) < +∞. Since x0

is continuous on [0, T ], there exists ρ > 0 such that

x0(t) + ρh ∈ K for all h, |h| = 1; t ∈ [0, T ].
By the definition of ∂ϕλ, we have

(
∂ϕλ(xλ), xλ − x0 − ρh

) ≥ ϕλ(xλ) − ϕλ

(
x0 + ρh

) = ϕλ(xλ),

whereupon we get

ρ

∫ T

0

∣
∣∂ϕλ(xλ)

∣
∣dt ≤

∫ T

0

(
∂ϕλ(xλ), xλ − x0)dt. (4.57)

On the other hand, once again using (4.38)–(4.41), one obtains

∫ T

0

(
∂ϕλ(xλ), xλ − x0)dt

≤
∫ T

0

(
Lλ

(
t, x0, u0) − Lλ(t, xλ,uλ) + p−1(∥∥u0 − u∗∥∥p − ‖uλ − u∗‖p

))
dt

+ (
pλ(T ), xλ(T ) − x0(T )

) − (
pλ(0), xλ(0) − x0(0)

) ≤ C,

because Lλ(t, x
0, u0) ≤ L(t, x0, u0), {∫ T

0 Lλ(t, xλ,uλ)dt} is bounded from below
(by (4.36)) and

(
pλ(T ), xλ(T ) − x0(T )

) − (
pλ(0), xλ(0) − x0(0)

)

≥ (
Φ

(
x∗(0) − xλ(0)

)
, xλ(0) − x0(0)

)

+ �λ

(
x0(0), x0(T )

) − �λ

(
xλ(0), xλ(T )

) ≤ C.

Hence,
∫ T

0

∣
∣∂ϕλ(xλ)

∣
∣dt ≤ C. (4.58)

Now, according to Assumption (C), part (iii), there exist functions α,β ∈
Lp(0, T ) and vh measurable from [0, T ] to U such that ‖vh(t)‖ ≤ β(t) a.e. t ∈
]0, T [ and Lλ(t, x

∗(t) + ρh,vh(t)) ≤ L(t, x∗(t) + ρh,vh(t)) ≤ α(t) a.e. t ∈ ]0, T [,
|h| = 1, λ > 0. Here, we have used the fact that the function x∗ : [0, T ] → E is
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continuous and so, its graph is compact in E. Next, by (4.40), (4.41) and the defini-
tion of ∂Lλ, we have

(
qλ(t), xλ(t) − x∗(t) − ρh

)

+ 〈
(B∗pλ)(t) + Ψ

(
u∗(t) − uλ(t)

)∥
∥u∗(t) − uλ(t)

∥
∥p−2

, uλ(t) − vh(t)
〉

≥ Lλ

(
t, xλ(t), uλ(t)

) − Lλ

(
t, x∗(t) + ρh,vh(t)

)
.

Along with (4.36), the latter yields

ρ
∣
∣qλ(t)

∣
∣ ≤ (

qλ(t), xλ(t) − x∗(t)
) + α(t)

+ ∥
∥(B∗pλ)(t)

∥
∥
∥
∥uλ(t) − vh(t)

∥
∥ + ∥

∥u∗(t) − uλ(t)
∥
∥p−1∥∥uλ(t) − vh(t)

∥
∥,

because the duality mapping Ψ is demicontinuous on U and uλ → u∗ in
Lp(0, T ;U).

Recalling that xλ(t) → x∗(t) uniformly on [0, T ] and uλ → u∗ in Lp(0, T ;U),
for λ sufficiently small we have

∣
∣qλ(t)

∣
∣ ≤ C

(∥∥(B∗pλ)(t)
∥
∥+∥

∥u∗(t)−uλ(t)
∥
∥p−1)(∥∥uλ(t)

∥
∥+β(t)

)+α1(t), (4.59)

where α1 ∈ L1(0, T ). Then, by (4.44), (4.45), and Lemma 4.8, we have

∣
∣pλ(t)

∣
∣ ≤ C

(

1 +
∫ T

t

∥
∥(B∗pλ)(s)

∥
∥
(
β(s) + ∥

∥uλ(s)
∥
∥
)

ds

)

.

Finally, by Hölder’s inequality

∣
∣pλ(t)

∣
∣p

′ ≤ C

(

1 +
∫ T

t

∥
∥(B∗pλ)(s)

∥
∥p′

ds

)

, 0 ≤ t ≤ T , (4.60)

where 1
p

+ 1
p′ = 1. Since B is “causal”, the adjoint B∗ : Lp′

(0, T ;E∗) →
Lp′

(0, T ;U∗) is “anticausal”, that is, B∗
χ(t,T )

= χ[t,T ]B∗
χ[t,T ] for all t ∈ [0, T ].

(Here, χ[t,T ] is the characteristic function of the interval [t, T ].) Then, arguing as in
the proof of Proposition 1.8, we obtain the inequality

∫ T

t

∥
∥(B∗y)(s)

∥
∥p′

ds ≤ C

∫ T

t

∣
∣y(s)

∣
∣p

′
ds, y ∈ Lp′

(0, T ;E∗), 0 ≤ t ≤ T .

The latter, compared with inequality (4.60), implies via Gronwall’s Lemma
∣
∣pλ(t)

∣
∣ ≤ C, ∀t ∈ [0, T ], (4.61)

where C is independent of λ. Next, since {B∗pλ} is bounded in Lp′
(0, T ;U∗) and

uλ → u∗ in Lp(0, T ;U) it follows by (4.59) that {qλ} is bounded in L1(0, T ;E∗)
and the integrals {∫

Ω
|qλ(s)|ds;Ω ⊂ [0, T ]} are uniformly absolutely continuous,
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that is, for every ε > 0 there exists δ(ε) > 0 such that
∫
Ω

|qλ(s)|ds ≤ ε whenever
the Lebesgue measure of Ω is ≤ δ(ε). Then, by the Dunford–Pettis criterion in
a Banach space (Theorem 1.121), we may conclude that {qλ} is weakly compact
in L1(0, T ;E∗). Thus, there exists q ∈ L1(0, T ;E∗) such that on a subsequence
λ → 0

qλ → q weakly in L1(0, T ;E∗). (4.62)

Similarly, by (4.61), we have

pλ → p∗ weakly in L1(0, T ;E∗) (4.63)

and, therefore,

B∗pλ → B∗p∗ weakly in Lp(0, T ;U∗).

By (4.43), (4.44), and the definition of ∂Lλ, we have

∫ T

0

(
Lλ(t, xλ,uλ) − Lλ(t, y, v)

)
dt

≤
∫ T

0

(〈
B∗pλ + Ψ (u∗ − uλ)‖u∗ − uλ‖p−2, uλ − v

〉 + (qλ, xλ − y)
)

dt,

for all (y, v) ∈ L∞(0, T ;E∗) × Lp(0, T ;U). Remembering that Lλ(t) ≤ L(t)

and (4.52)

lim inf
λ→0

∫ T

0
Lλ(t, xλ,uλ)dt ≤

∫ T

0
L(t, x∗, u∗)dt,

we obtain by (4.43), (4.44), and (4.62)

∫ T

0

(
L(t, x∗, u∗) − L(t, y, v)

)
dt ≤

∫ T

0

(〈B∗p∗, u∗ − v〉 + (q, x∗ − y)
)

dt,

because Ψ is demicontinuous on U and uλ → u∗ strongly in Lp(0, T ;U).
Let Ω be any measurable subset of [0, T ] and let y(t), v(t) be defined by

y(t) =
{

ỹ, on Ω,

x∗(t), on [0, T ] \ Ω,

v(t) =
{

ṽ, on Ω,

u∗(t), on [0, T ] \ Ω,

wherein (ỹ, ṽ) ∈ E × U . We have
∫

Ω

(
L

(
t, x∗(t), u∗(t)

) − L(t, ỹ, ṽ)
)

dt

≤
∫ T

0

(〈
B∗p∗, u∗(t) − ṽ

〉 + (
q(t), x∗(t) − ỹ

))
dt
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and, since Ω is arbitrary, it follows that

(
q(t), x∗(t) − ỹ

) + 〈
(B∗p∗)(t), u∗(t) − ṽ

〉 ≥ L
(
t, x∗(t), u∗(t)

) − L(t, ỹ, ṽ)

a.e. t ∈ ]0, T [.

Hence,
(
q(t), (B∗p∗)(t)

) ∈ ∂L
(
t, x∗(t), u∗(t)

)
a.e. t ∈ ]0, T [. (4.64)

Next, by Lemma 4.9 and (4.39), we may infer that on a subsequence again denoted
by λ, we have

pλ(0) → p∗
0 weakly in E∗,

pλ(T ) → p∗
T weakly in E∗.

Since Φ is demicontinuous on E, it follows by (4.42) that

(
p∗

0, x∗(0) − x1
) − (

p∗
T , x∗(T ) − x2

) ≥ lim inf
λ→0

�λ

(
xλ(0), xλ(T )

) − �(x1, x2),

∀(x1, x2) ∈ E × E.

Since, as noticed earlier,

lim inf
λ→0

�λ

(
xλ(0), xλ(T )

) ≥ �
(
x∗(0), x∗(T )

)
,

the latter implies

(p∗
0,−p∗

T ) ∈ ∂�
(
x∗(0), x∗(T )

)
. (4.65)

We set

wλ(t) =
∫ t

0
∂ϕλ

(
xλ(s)

)
ds, 0 ≤ t ≤ T .

By estimate (4.58), we see that Theorem 1.126 is applicable. Thus, there exist a
function w ∈ BV([0, T ];E∗) and a sequence convergent to zero, again denoted by
{λ} such that wλ(t) → w(t) weakly in E∗ for every t ∈ [0, T ] and

lim
λ→0

∫ T

t

(
∂ϕλ

(
xλ(s)

)
, y(s)

)
ds =

∫ T

t

(dw,y)

for all y ∈ C
([t, T ];E)

, ∀t ∈ [0, T ]. (4.66)

Hence, for all t ∈ [0, T ], we have

∫ T

t

U∗(s, t)∂ϕλ

(
xλ(s)

)
ds →

∫ T

t

U∗(s, t)dw weakly in E∗
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and, letting λ tend to zero in (4.39), we see by (4.47), (4.62), and (4.63) that p∗
satisfies the equation

p∗(t) = U∗(T , t)p∗
T −

∫ T

t

U∗(s, t)q(s)ds −
∫ T

t

U∗(s, t)dw(s), 0 ≤ t ≤ T ,

and p∗(0) = p∗.
Along with (4.64) and (4.65), the latter shows that the functions p∗, w satisfy

together with x∗ and u∗, (4.17), (4.18), (4.20), and (4.21). As regards (4.19), it
follows by (4.66) and the obvious inequality

∫ T

t

(
∂ϕλ

(
xλ(s)

)
, xλ(s) − y(s)

)
ds ≥ 0 for all y ∈ K .

Assume now that B is given by (4.3), where B : [0, T ] → L(U,E) is strongly
measurable and ‖B(t)‖L(U,E) ≤ η(t) a.e. t ∈ ]0, T [, where η ∈ L∞(0, T ). Then,
‖B∗(t)‖L(E∗,U∗) ≤ η(t) and by (4.61) we see that ‖(B∗pλ)(t)‖ ≤ C a.e. t ∈ ]0, T [.
Since uλ → u∗ in Lp(0, T ;U) and qλ → q weakly in L1(0, T ;E∗), we may con-
clude by (4.59) that q ∈ Lp(0, T ;E∗). This concludes the proof.

4.1.5 Proof of Theorem 4.6

If w satisfies (4.25) and (4.26), then clearly (4.19) holds.
Assume now that w ∈ BV([0, T ];E∗) satisfies (4.19). To prove the theorem, it

suffices to show that w and dws satisfy (4.25) and (4.26), respectively.
Let t0 be arbitrary but fixed in ]0, T [. For y ∈ K and ε > 0, define the function yε

yε(t) =

⎧
⎪⎨

⎪⎩

x∗(t), for |t − t0| ≥ ε,

(1 − ε−1(t0 − t))y + ε−1(t0 − t)x∗(t0 − ε), for t ∈ [t0 − ε, t0],
(1 − ε−1(t − t0))y + ε−1(t − t0)x

∗(t0 + ε), for t ∈ [t0, t0 + ε].

Obviously, yε is continuous from [0, T ] to E and yε(t) ∈ K for all t ∈ [0, T ].
By (4.19), we have

∫ T

0

(
ẇ(t), x∗(t) − yε(t)

)
dt +

∫ T

0
(dws, x

∗ − ys) ≥ 0. (4.67)

We set ρε(t) = ε−1(x∗(t) − yε(t)). If t0 happens to be a Lebesgue point for the
function ẇ, then, by an elementary calculation involving the definition of yε , we get

lim
ε→0

∫ T

0

(
ẇ(t), ρε(t)

)
dt = (

ẇ(t0), x
∗(t0) − y

)
. (4.68)
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Inasmuch as x∗ − yε = 0, outside [t0 − ε, t0 + ε], we have

∫ T

0
(dws, x

∗ − yε) =
∫ t0+ε

t0−ε

(dws, x
∗ − yε).

On the other hand, for each η > 0, there exist {x∗
iη}Ni=1 ⊂ E and αiη ∈ C([0, T ])

such that
∣
∣
∣
∣
∣
x∗(t) −

N∑

i=1

x∗
iηαiη(t)

∣
∣
∣
∣
∣
≤ η for t ∈ [0, T ].

We set

zη(t) = x∗(t) −
N∑

i=1

x∗
iηαiη(t).

We have
∣
∣
∣
∣

∫ t0+ε

t0−ε

(dws, zη)

∣
∣
∣
∣ ≤ (

Vs(t0 + ε) − Vs(t0 − ε)
)

sup
{∣
∣zη(t)

∣
∣; |t − t0| ≤ ε

}
,

where Vs(t) is the variation of ws on the interval [0, t]. Since Vs is a.e. differentiable
on ]0, T [, we may assume that

lim sup
ε→0

ε−1
∫ t0+ε

t0−ε

(dws, zη) ≤ Cη, (4.69)

where C is independent of η.
Now, we have

∣
∣
∣
∣
∣

∫ t0+ε

t0−ε

(

dws,

N∑

i=1

x∗
iηαiη

)∣
∣
∣
∣
∣
≤

N∑

i=1

∣
∣
∣
∣

∫ t0+ε

t0−ε

αiη(t)d(ws, x
∗
iη)

∣
∣
∣
∣

≤
N∑

i=1

(
Viη(t0 + ε) − Viη(t0 − ε)

)
γiη,

where Viη(t) is the variation of (ws, x
∗
iη) on [0, t] and γiη = sup|αiη(t)|. Since the

weak derivative ẇs of ws is zero a.e. on ]0, T [, we may infer that

d

dt
Viη(t) = 0 a.e. t ∈ ]0, T [

and, therefore, we may assume that

lim
ε→0

ε−1
∫ t0+ε

t0−ε

(

dws,

N∑

i=1

x∗
iηαiη

)

= 0 for all η > 0. (4.70)
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Similarly, we see that

lim
ε→0

ε−1
∫ t0+ε

t0−ε

(
dws, yε(s)

) = 0 a.e. t0 ∈ ]0, T [,

which along with (4.69) and (4.70) yields

lim
ε→0

∫ T

0
(dws,ρε) = 0,

whereupon, by (4.67) and (4.68),

(
ẇ(t0), x

∗(t0) − y
) ≥ 0 a.e. t0 ∈ ]0, T [.

Since y is arbitrary in K , this implies (4.25).
To conclude the proof, it remains to be shown that dws ∈ N (x∗,K ), that is,

∫ T

0
(dws, x

∗ − y) ≥ 0 for all y ∈ K . (4.71)

Let Ω be the support of the singular measure dws . Then, for any ε > 0, there
exists an open subset Ω0 of ]0, T [ such that Ω ⊂ Ω0 and the Lebesgue measure
of Ω0 is ≤ ε. Let ρ ∈ C∞

0 (R) be such that 0 ≤ ρ ≤ 1, ρ = 1 on Ω and ρ = 0 on
]0, T [ \ Ω0.

We set yε = ρy + (1 − ρ)x∗, where y ∈ K is arbitrary. By (4.19), we have

∫ T

0

(
ws, x

∗ − yε
) +

∫ T

0

(
ẇ, x∗ − yε

)
dt ≥ 0.

Since x∗ − yε = 0 on [0, T ] \ Ω0, we find that

∣
∣
∣
∣

∫ T

0

(
ẇ, x∗ − yε

)
dt

∣
∣
∣
∣ ≤ C

∫

Ω0

|ẇ|dt ≤ δ(ε),

where limε→0 δ(ε) = 0. On the other hand, since dws = 0 on [0, T ] \ Ω and ρ = 1
on Ω , we see that

∫ T

0
(dws, x

∗ − yε) =
∫ T

0
(dws, x

∗ − y),

whereupon it follows that

∫ T

0
(dws, x

∗ − y) ≥ −δ(ε).

Since ε is arbitrary, we obtain (4.71), as claimed.
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Remark 4.10 A little calculation involving the definition of the Stieltjes–Riemann
integral reveals that

lim
ε→0

∫ T

0
(dw,x∗ − yε) = lim

ε→0

∫ t0+ε

t0−ε

(dw,x∗ − yε)

= (
w(t0 + 0) − w(t0 − 0), x∗(t0) − y

)
.

Hence, for all y ∈ K , we have
(
w(t0 + 0) − w(t0 − 0), x∗(t0) − y

) ≥ 0, t0 ∈ [0, T ],
and, therefore, w(t0 + 0)−w(t0 − 0) ∈ N(x∗(t),K) for every t0 ∈ [0, T ]. Inasmuch
as, by (4.18),

p∗(t0 + 0) − p∗(t0 − 0) = w(t0 + 0) − w(t0 − 0),

we may conclude that

p∗(t0 + 0) − p∗(t0 − 0) ∈ N
(
x∗(t0),K

)
for all t0 ∈ [0, T ].

As noticed earlier, this amounts to saying that the set of all the points t0, where the
dual extremal arc is discontinuous, is contained in the set of t values for which x∗(t)
lies on the boundary of K (we recall that N(x,K) = {0} for x ∈ intK).

4.1.6 Further Remarks on Optimality Theorems

Analyzing the proofs of Theorems 4.5 and 4.6, it is apparent that the assumptions
imposed on L, � and K are, at least in certain cases, indeed excessive. For the sake
of simplicity, we discuss here the simple case when U and E are Hilbert spaces and
p = 2.

In passing, we observe that, if A(t) is continuous on E or, more generally, if, for
every p0 ∈ E and g ∈ L2(0, T ;E), the forward Cauchy problem

p′(t) + A∗(t)p(t) = g(t), 0 ≤ t ≤ T ,

p(0) = p0,

is well posed, then in Hypothesis (E) we may reduce conditions (4.9) and (4.10) to

x0 ∈ int
{
h ∈ E; (h, xT ) ∈ KL

}

and

x0 ∈ int
{
h ∈ E; (h, xT ) ∈ Dom(�)

}
.

As mentioned earlier, condition (4.9) in Hypothesis (E) can be regarded as a com-
plete controllability assumption for (4.1), which is, in many important infinite-
dimensional examples, a very stringent requirement. However, it turns out that this
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condition can be weakened by replacing the strong interior by the interior relative to
a certain linear closed manifold in E. We illustrate this for a control problem with
fixed end points. In other words, the function � is defined by

�(h1, h2) =
{

0, if h1 = x0 and h2 = xT ,

+∞, otherwise,

where x0 and xT are fixed in E. We consider only the particular case K = E, f = 0
and x0 = 0, the general case being obtained by appropriately translating the special
case we consider.

If u ∈ L2(0, T ;U) is given, then we denote by x(·, u) the response function
to (4.1) with control u and initial condition x(0, u) = 0. Then, the attainable set
at the time T is defined by

ET = {
x(T ,u); u ∈ L2(0, T ;U)

}
.

Let ET be the closure of ET in E. Clearly, ET is a closed linear manifold in E.
Finally, let KT be defined by

KT = {
h ∈ E; (0, h) ∈ KL

}
.

Obviously, KT is a subset of ET and, in terms of the above notation, condition (4.9)
may be expressed as xT ∈ intKT . In general, the interior of ET in E is empty. If the
interior of ET is not empty, then we have ET = E, because ET is a linear mani-
fold. However, it turns out that, in the special case we are considering, Theorem 4.5
remains valid if this condition is replaced by the following weaker one:

(E′) xT ∈ riKT ,

where ri denotes the interior relative to the manifold ET .
Here is the argument. Let (x,u) be an optimal pair of the given problem. Clearly,

the control optimal problem:

Minimize
∫ T

0

(

L
(
t, y(t), v(t)

) + 1

2

∥
∥v(t) − u(t)

∥
∥2

)

dt + �λ
(
y(0), y(T )

)
,

over all (y, v) ∈ H

has a unique solution (xλ,uλ) ∈ H . Here, �λ : E × E → ]−∞,+∞] is defined by

�λ(x1, x2) =
{

1
2λ

|x2 − xT |2, if x1 = 0,

+∞, otherwise.

It should be observed that Hypotheses (A)–(E) are trivially satisfied. Thus, by The-
orem 4.5, the boundary-value problem

x ′
λ − A(t)xλ = B(t)uλ, t ∈ [0, T ],
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{
p′

λ + A∗(t)pλ,B
∗(t)pλ + u∗ − uλ

} ∈ ∂L(t, xλ,uλ) a.e. on ]0, T [,
xλ(0) = 0, λpλ(T ) + xλ(T ) = xT

has at least one solution (xλ,uλ,pλ).
The proof continues by the same argument as that used in the proof of Theo-

rem 4.5, except for Lemma 4.9, where Hypothesis (E) was necessary. However, this
lemma can be proved under Hypothesis (E′). In fact, let Φ0 : ET → ]−∞,+∞] be
defined by

Φ0(h) = inf
{
G(y, v); (y, v) ∈ H ; y(0) = 0, y(T ) = h

}
,

where G is defined as in the proof of Lemma 4.9. Obviously, Φ0 is convex and
lower-semicontinuous on ET . Moreover, Dom(Φ0) = KT and Hypothesis (E′) im-
plies that Φ0 is locally bounded at h = xT . Since pλ(T ) ∈ ET , reasoning as in the
general case, one concludes that {|pλ(T )|} is bounded.

While various other extensions of Theorem 4.5 could be pursued, we concentrate
on the control of periodic systems, which are treated in more detail in Sect. 4.5. If
the function � : E × E → R

∗
is given by

�(x1, x2) =
{

0, if x1 = x2,

+∞, if x1 �= x2,

then Problem (P) leads to a problem with periodic conditions.

(PT) Minimize
∫ T

0 L(t, x(t), u(t))dt on the set of all (x,u) ∈ C([0, T ];E) ×
L2(0, T ;U) subject to (4.1) with periodic conditions x(0) = x(T ).

For the sake of simplicity, we consider here the special case where K = E, B is
given by formula (4.3) and A(t), B(t) are time-independent and

L(t, x, y) = ϕ0(x) + ψ(u) for all x ∈ E, u ∈ U,

where ϕ0 : E → R is a continuous, convex function and ψ : U → R
∗

is lower-
semicontinuous and convex. Further, we assume that the operator (I − eAT )−1 is
well defined and continuous on all of E. The latter condition implies, by a standard
existence result, that (4.1) has a unique periodic solution with period T .

The optimality equations (4.17)–(4.21) become

x∗′ = Ax∗ + Bu∗, t ∈ [0, T ], (4.17′)

p∗′ = −A∗p∗ + q, t ∈ [0, T ], (4.18′)

q(t) ∈ ∂ϕ0(x∗(t)
)
, B∗p∗(t) ∈ ∂ψ

(
u∗(t)

)
, t ∈ [0, T ], (4.19′)

x∗(0) = x∗(T ), p∗(0) = p∗(T ). (4.20′)

It must be noticed that Theorem 4.5 is not applicable since Hypothesis (E) is
not satisfied in this case. However, by a slight modification of the proof, we see
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that (4.17′)–(4.20′) are necessary and sufficient for optimality in Problem (PT). In-
deed, by (4.41), it follows that, for ρ > 0,
(
qλ(t), xλ(t)−x∗(t)−ρw

) ≥ ϕ0
λ

(
xλ(t)

)−ϕ0
λ

(
x∗(t)+ρw

)
for t ∈ [0, T ], |w| = 1.

Hence,
∣
∣qλ(t)

∣
∣ ≤ C for all t ∈ [0, T ] and λ > 0,

because ϕ0 is continuous.
Also, notice that, in this case,

�λ(x1, x2) = |x1 − x2|2
4λ

for all x1, x2 ∈ E,

and therefore (4.42) becomes

pλ(0) + x∗(0) − xλ(0) = (2λ)−1(xλ(0) − xλ(T )
) = pλ(T ).

Since the operator I − eA∗T is invertible and, by (4.46),

pλ(t) = eA∗(T −t)pλ(T ) −
∫ T

t

eA∗(s−t)qλ(s)ds, 0 ≤ t ≤ T ,

we may conclude that {|pλ(T )|} is bounded, as claimed.
Now, consider the case where E and U are Hilbert, K = E and

�(x1, x2) = 0 if x1 = x0, �(x1, x2) = +∞ if x1 �= x0.

If x(t, x0, u) is the solution to (4.1) with the initial condition x(0) = x0, then Prob-
lem (P) can be written, in this case, as

inf
{
J (u); u ∈ L2(0, T ;U)

}
,

where J : L2(0, T ;U) → ]−∞,+∞] is the convex function

J (u) =
∫ T

0
L

(
t, x(t, x0, u), u(t)

)
dt.

The subdifferential ∂J is given by

∂J (u) = {
w ∈ L2(0, T ;U); w(t) ∈ ∂uL

(
x(t), u(t)

) − B∗p(t)
}
,

∀u ∈ L2(0, T ;U),

where (x,p) is a solution to the system

x′ = A(t)x + Bu; p′ ∈ −A∗(t)p + ∂sL(x,u), t ∈ [0, T ],
x(0) = x0, p(T ) = 0.
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This follows by Theorem 4.5, noticing that w ∈ ∂J (u) if and only if u solves the
minimization problem

inf

{

J (u) −
∫ T

0

〈
u(t),w(t)

〉
dt

}

.

We may use the formula for ∂J to construct numerical algorithms for Problem (P).
For instance, the classical gradient algorithm

ui+1 = ui − ρiwi, wi ∈ ∂J (ui), ρi > 0,

reduces to

x ′
i = A(t)xi + Bui, p′

i ∈ −A∗(t)pi + ∂ẋL(xi, ui), t ∈ [0, T ],
xi(0) = x0, pi(T ) = 0,

ui+1 = ui − ρiwi; wi ∈ ∂uL(xi, ui) − B∗pi, i = 0,1, . . . ,

and we have (see problem (2.2))

ui → u∗ weakly in L2(0, T ;U),

where u∗ is optimal.

4.1.7 A Finite-Dimensional Version of Problem (P)

We study here Problem (P) in the special case E =R
n, U =R

m and

�(x1, x2) =
{

�0(x1) + �1(x2), if x1 ∈ C0, x2 ∈ C1,

+∞, otherwise.

Namely,

Minimize
∫ T

0
L

(
t, x(t), u(t)

)
dt + �0

(
x(0)

) + �1
(
x(T )

)

on all (x,u) ∈ AC
([0, T ];Rn

) × U (4.72)

subject to x′ = A(t)x(t) + B(t)u + f (t) a.e. t ∈ (0, T ),

x(0) ∈ C0, x(T ) ∈ C1, (4.73)

under the following assumptions.

(k) The function L : (0, T ] ×R
n ×R

m → R is convex and continuous in (x,u)

and measurable in T . The Hamiltonian function

H(t, x,p) = sup
{
p · u − L(t, x,u); u ∈ U(t)

}
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belongs to L1(0, T ) for each (x,p) ∈ R
n ×R

n. For each t ∈ [0, T ], the set
U(t) is closed and convex and {t ∈ [0, T ]; C ∩ U(t) �= ∅} is measurable for
each closed subset C of Rm.

(kk) The functions �0, �1 : Rn → R are convex and everywhere finite. The sets
C0,C1 ⊂ R

n are closed and convex.
(kkk) There is [x,u] ∈ AC([0, T ];Rn)×U satisfying the state system (4.73) such

that L(t, x,u) ∈ L1(0, T ) and either x(0) ∈ intC0 or x(T ) ∈ intC1.
(kkkk) A ∈ L1(0, T ;Rn ×R

n), B ∈ L∞(0, T ;Rm ×R
n), f ∈ L1(0, T ;Rn).

Here, AC([0, T ];Rn) is the space of absolutely continuous function from [0, T ] to
R

n and U is the set of all measurable functions u : (0, T ) → R
m such that u(t) ∈

U(t) a.e. t ∈ (0, T ). We denote by | · | the norm in R
n and R

m.
By (k), it follows that any optimal control u∗ to problem (4.72) belongs to

L1(0, T ;Rm). Indeed, since

L(t, x,u) = sup
{
p · u − H(t, x,p); p ∈R

m
}
, ∀(x,u) ∈ R

n × U(t), (4.74)

we have

L
(
t, x∗(t), u∗(t)

) ≥ ρ
∣
∣u∗(t)

∣
∣ − H

(
t, x∗(t), ρ sgnu∗(t)

)
a.e. t ∈ (0, T )

and the latter implies that u∗ ∈ L1(0, T ;Rm).
As regards the maximum principle, it has in this case the following form.

Theorem 4.11 Assume that conditions (k)–(kkkk) are satisfied. Then, the pair
(x∗, u∗) is optimal in problem (4.72) if and only if there exists p ∈ AC([0, T ];Rn)

which along with x∗ and u∗ satisfies the system

p′ + A∗(t)p ∈ ∂xL(t, x∗, u∗) a.e. t ∈ (0, T ), (4.75)

p(0) ∈ NC0

(
x∗(0)

) + ∂�0
(
x∗(0)

)
, (4.76)

−p(T ) ∈ NC1

(
x∗(T )

) + ∂�1
(
x∗(T )

)
,

B∗(t)p(t) ∈ ∂uL
(
t, x∗(t), u∗(t)

) + NU(t)

(
u∗(t)

)
a.e. t ∈ (0, T ). (4.77)

Here, ∂L = [∂xL, ∂uL] is the subdifferential of L(t, . . .) and A∗(t),B∗(t) are the
adjoint of A(t) ∈ L(Rn,Rn) and of B(t) ∈ L(Rm,Rn), respectively.

Proof Sufficiency. Let x∗, u∗,p satisfy system (4.73), and (4.76)–(4.77). By the
definition of the subdifferential, we have, as in the proof of Theorem 4.5,

L
(
t, x∗(t), u∗(t)

) ≤ L
(
t, x(t), u(t)

) + B∗(t)p(t) · (u∗(t) − u(t)
)

+ (
p′(t) + A∗(t)p(t)

) · (x∗(t) − x(t)
)

a.e. t ∈ (0, T ),

�0
(
x(0)

) + �1
(
x∗(T )

) ≤ �0
(
x(0)

) + �1
(
x(T )

)

+ p(0) · (x∗(0) − x(0)
) − p(T ) · (x∗(T ) − x(T )

)
,
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for any solution (x,u) ∈ AC([0, T ];Rn) × U to (4.73). This yields

∫ T

0
L

(
t, x∗(t), u∗(t)

)
dt + �0

(
x∗(0)

) + �1
(
x∗(T )

)

≤
∫ T

0
L

(
t, x(t), u(t)

)
dt + �0

(
x(0)

) + �1
(
x(T )

)
,

that is, (x∗, u∗) is optimal into problem (4.72).
Necessity. The proof is similar to that of Theorem 4.5. Denote by L̃, �̃0 and �̃1

the functions

L̃(t, x, u) =
{

L(t, x,u), if u ∈ U(t),

+∞, if u∈U(t),

�̃0(x) =
{

�0(x), if x ∈ C0,

+∞, if x ∈C0,

�̃1(x) =
{

�1(x), if x ∈ C1,

+∞, if x ∈C1,

and by L̃λ, (�̃0)λ, (�̃1)λ the regularized of L̃, �̃0 and �̃1, respectively, that is,

L̃λ(t, x,u) = inf

{ |x − y|2
2λ

+ |u − v|2
2λ

+ L(t, y, v); (y, v) ∈ R
n ×R

m

}

,

(
�̃i

)
λ
(x) = inf

{ |x − y|2
2λ

+ �i(y), y ∈R
n

}

, i = 0,1.

We recall that L̃λ(t, ·), (�̃i )λ are convex, continuously differentiable and

L̃λ(t, x,u) = |[x,u] − (I + λ∂L̃(t, ·))−1(x,u)|2
2λ

+ L̃
(
t,

(
I + λ∂L̃(t, ·))−1

(x,u)
)
, ∀λ > 0, (4.78)

(
�̃i

)
λ
(x) = |x − (I + λ∂�i)

−1x|2
2λ

+ �̃i

((
I + λ∂�̃i

))−1
x, i = 0,1, λ > 0.

(4.79)

Let (x∗, u∗) be optimal in problem (4.72).
Consider the functions Φλ : L1(0, T ;Rm) ×R

n → R defined by

Φλ(u, x0) =
∫ T

0
L̃λ

(
t, x(t, x0, u), u(t)

)
dt + (

�̃0
)
λ
(x0) + (

�̃1
)
λ

(
x(T , x0, u)

)

+ ε

∫ T

0

∣
∣u(t) − u∗(t)

∣
∣dt + 2−1

∣
∣x∗(0) − x0

∣
∣2

,
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where ε > 0 is arbitrary but fixed and x(t, x0, u) is the solution to (4.73) with the
initial value condition x(0) = x0.

According to Ekeland’s variational principle (Theorem 3.73), for every λ > 0
there exist (uλ, x

λ
0 ) ∈ L1(0, T ;Rm) ×R

n such that

Φλ

(
uλ, x

λ
0

) = inf
{
Φλ(u,x0) + λ

1
2 ‖uλ − u‖L1(0,T ;Rm)

+ λ
1
2
∥
∥x0 − xλ

0

∥
∥; (u, x0) ∈ L1(0, T ;Rm

) ×R
n
}
. (4.80)

�

We set xλ = x(t, xλ
0 , uλ), that is, xλ(0) = xλ

0 .

Lemma 4.12 We have

B∗(t)pλ(t) = ∇uL̃λ

(
t, xλ(t), uλ(t)

) + εηλ(t) + λ
1
2 ξλ(t), (4.81)

where ηλ, ξλ ∈ L∞(0, T ;Rm), |ηλ(t)|, |ξλ(t)| ≤ 1, a.e. t ∈ (0, T ) and pλ ∈
AC([0, T ];Rn), satisfies the system

p′
λ = −A∗(t)pλ + ∇xL̃λ(t, xλ,uλ) a.e. t ∈ (0, T ), (4.82)

pλ(0) = ∇(
�̃0

)
λ

(
xλ(0)

) + xλ(0) − x∗(0) + λ
1
2 νλ, |νλ| ≤ 1,

pλ(T ) = −∇(�̃1)λ
(
xλ(T )

)
.

(4.83)

Proof By (4.80), it follows that

lim
h↓0

h−1(Φλ

(
uλ + hv,xλ

0 + hx0
) − Φλ

(
uλ, x

λ
0

))

+ λ
1
2 ‖v‖L1(0,T ;Rm) + λ

1
2 |x0| ≥ 0, (4.84)

for all (v, x0) ∈ L1(0, T ;Rm) ×R
n.

Now, let pλ be the solution to (4.82) with final value condition pλ(T ) =
−∇(�̃1)λ(xλ(T )). Then, using the fact that L̃λ(t, ·), (�̃0)λ and (�̃1)λ are differen-
tiable, it follows that

lim
h→0

h−1(Φλ

(
uλ + hv,xλ

0 + hx0
) − Φλ

(
uλ, x

λ
0

))

=
∫ T

0

(∇xL̃λ(t, xλ,uλ) · z(t) + ∇uL̃λ(t, xλ,uλ) · v(t)
)

dt

+ ∇(
�̃0

)
λ

(
xλ

0

) · x0 + ∇(
�̃1

)
λ

(
xλ(T )

) · z(T )

+ (
xλ(0) − x∗(0)

) · xλ(0) + ε

∫ T

0
ηλ(t) · v(t)dt,
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where ηλ(t) = sgn(uλ(t) − u∗(t)) and

z′ = A(t)z + B(t)v a.e. t ∈ (0, T ),

z(0) = x0.

(Here, sgnv = v
|v| if |v| ≤ 1, sgn 0 = {w ∈R

m; |w| ≤ 1}.)
Then, by (4.82), we see that

lim
h→0

(
Φλ

(
uλ + hv,xλ

0 + hx0
) − Φλ

(
uλ, x

λ
0

))

=
∫ T

0

(∇uL̃(t, xλ,uλ) − B∗pλ + εηλ

) · v dt

+ (∇(�̃0)λ
(
xλ(0)

) + xλ(0) − x∗(0) − pλ(0)
) · x0

and, by (4.83), it follows that

∫ T

0

(∇L̃λ(t, xλ,uλ) − B∗pλ + εηλ

) · v dt + λ
1
2

∫ T

0

∣
∣v(t)

∣
∣dt

+ (∇(
�̃0

)
λ

(
xλ(0)

) + xλ(0) − x∗(0) − pλ(0)
) · x0

+ λ
1
2 |x0| ≥ 0, ∀v ∈ L1(0, T ;Rm

)
, ∀x0 ∈R

n,

and this implies (4.81) and the first end-point condition in (4.83). �

Lemma 4.13 For λ → 0,

uλ → u∗ strongly in L1
(
0, T ;Rm

)
,

xλ → x∗ uniformly on [0, T ].

Proof We have, by (4.80),

Φλ

(
uλ, xλ(0)

) ≤ Φλ

(
u∗, x∗(0)

) + λ
1
2

∫ T

0
|uλ − u∗|dt + λ

1
2
∣
∣x∗(0) − xλ(0)

∣
∣

≤
∫ T

0
L(t, x∗, u∗)dt + �0

(
x∗(0)

) + �1
(
x∗(T )

)

+ λ
1
2

(∫ T

0
|uλ − u∗|dt + ∣

∣x∗(0) − xλ(0)
∣
∣
)

, (4.85)

because L̃ ≤ L and (�̃i )λ ≤ �i, i = 0,1.
We note that, by the conjugation formula (4.74), we have

L(t, x,u) ≥ −H(t, x,0), ∀x ∈ R
n, u ∈ U(t), t ∈ [0, T ],
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and that

−H(t,0,0) ≤ −H(t, x,0) − η(t) · x, ∀x ∈R
n, t ∈ [0, T ], (4.86)

where η(t) ∈ ∂x(−H(t,0,0)) and

∥
∥η(t)

∥
∥ ≤ H(t,0,0) + sup

{−H(t, y,0); |y| ≤ 1
}

and so, by Lemma 4.14 below, η ∈ L1(0, T ;Rm).
We have, therefore,

L(t, x,u) ≥ η(t) · x + H(t,0,0), ∀x ∈R
n, u ∈ U(t), t ∈ [0, T ].

Then, replacing, if necessary, L̃ by L̃(t, x, u) − η(t) · x − H(t,0,0) and taking

Φλ(u, x0) =
∫ T

0

(
L̃λ(t, x0, u) + η(t) · x(t, u, x0) + H(t,0,0)

)
dt + (

�̃0
)
λ
(x0)

+ (
�̃1

)
λ

(
x(T , x0, u)

) + ε

∫ T

0
|u − u∗|dt + 2−1

∣
∣x0 − x∗(0)

∣
∣2

,

we may assume that

∫ T

0
L̃λ(t, xλ,uλ)dt ≥

∫ T

0
β(t)dt,

where β ∈ L1(0, T ). We have |xλ(t)| ≤ C(|xλ(0)| + ∫ T

0 |uλ(t)|dt), t ∈ (0, T ).
Then, by (4.85), we see that

‖uλ − u∗‖L1(0,T ) + ∣
∣xλ(0)

∣
∣ ≤ C, ∀λ > 0.

We also note that, by (4.78),

∫ T

0
L(t, xλ,uλ)dt ≤

∫ T

0
L̃

(
t,

(
I + λ∂L̃

)−1
(xλ,uλ)

)
dt

+ λ−1
∫ T

0

∣
∣
(
I + λ∂L̃

)−1
(xλ,uλ) − (xλ,uλ)

∣
∣2 dt

≤ 2
∫ T

0
L̃λ(t, xλ,uλ)dt ≤ C, ∀λ > 0.

On the other hand, again by (4.74) and Lemma 4.14, we have

L(t, x,u) ≥ N |u| − H(t, x,N sgnu) ≥ N |u| − βN(t), ∀t ∈ (0, T ), |x| ≤ N,

where βN ∈ L1(0, T ).
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Hence, for each measurable subset E0 ⊂ (0, T ), we have
∫

E0

∣
∣uλ(t)

∣
∣dt ≤ 1

N

∫

E0

L(t, xλ,uλ)dt + 1

N

∫

E0

∣
∣βN(s)

∣
∣ds + C

N
+ 1

N

∫

E0

∣
∣βN(s)

∣
∣ds.

Then, by the Dunford–Pettis theorem (Theorem 1.121), we infer that {uλ} is weakly
compact in L1(0, T ;Rm), and so, on a subsequence convergent to zero, again de-
noted λ, we have

uλ → ũ weakly in L1
(
0, T ;Rm

)
,

xλ → x̃ in C
([0, T ];Rn

)
,

x′
λ → x̃′ weakly in L1

(
0, T ;Rn

)
.

Then, by (4.78), it follows that

lim
λ→0

∫ T

0
L̃λ(t, xλ,uλ)dt ≥

∫ T

0
L̃(t, x̃, ũ)dt,

because, as seen earlier, the function (x,u) → ∫ T

0 L(t, x,u)dt is lower-semiconti-
nuous in L1(0, T ;Rn) × L1(0, T ;Rm). Similarly, by (4.79), we have

lim inf
λ→0

(�0)λ
(
xλ(0)

) ≥ �̃0
(
x̃(0)

)
,

lim inf
λ→0

(�1)λ
(
xλ(T )

) ≥ �̃1
(
x̃(T )

)
.

Then, letting λ tend to zero in (4.85), we get

∫ T

0
L̃(t, x̃, ũ)dt + �̃0

(
x̃(0)

) + �̃1
(
x̃(T )

)

+ lim inf
λ↓0

(

ε

∫ T

0
|uλ − u∗|dt + 2−1

∣
∣xλ(0) − x∗(0)

∣
∣2

)

≤ inf (4.72),

and the conclusion of Lemma 4.14 follows. �

We are going to obtain the optimality system (4.72)–(4.77) by letting λ tend to
zero in (4.81)–(4.83). To this purpose, some a priori estimates on pλ are necessary.
Let (x,u) be an admissible pair chosen as in assumption (kkk) (x(0) ∈ intC0). By
(4.83), we have

(
pλ(0) + x∗(0) − xλ(0) − λ

1
2 νλ

) · (xλ(0) − x(0) − ρw
)

≥ (
�̃0

)
λ

(
xλ(0)

) − (
�̃0

)
λ

(
x(0) + ρw

)
,

for all ‖w‖ = 1 and ρ > 0. Since, for ρ sufficiently small,

(
�̃0

)
λ

(
x(0) + ρw

) ≤ �̃0
(
x(0) + ρw

) ≤ C, ∀λ > 0,
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we get

ρ
∣
∣pλ(0)

∣
∣ ≤ C + pλ(0) · (xλ(0) − x(0)

) ∀λ > 0.

On the other hand, by (4.82) we see that

−pλ(0) · (xλ(0) − x(0)
) + pλ(T ) · (xλ(T ) − x(T )

)

=
∫ T

0
∇xL̃λ(t, xλ,uλ) · (xλ − x)dt +

∫ T

0
B(uλ − u) · pλ dt,

because x ′ = A(t)x + B(t)u + f (t) a.e. t ∈ (0, T ).
Now, using (4.82), we get

−pλ(0) · (xλ(0) − x(0)
) ≥ (

�̃1
)
λ

(
xλ(T )

) − (
�̃1

)
λ

(
x(T )

)

+
∫ T

0

(
L̃λ(t, xλ,uλ) − L̃λ(t, x,u)

)
dt

+
∫ T

0
(uλ − u)

(
εηλ(t) + λ

1
2 ξλ(t)

)
dt ≥ C, ∀λ > 0,

because L̃λ ≤ L and (�1)λ ≤ �1, ∀λ > 0.
Hence, {pλ(0)} is bounded in R

n.
For further estimates, we need the following lemma, which was already invoked

in the proof of Lemma 4.13.

Lemma 4.14 For any r > 0, there exist αr,βr ∈ L1(0, T ) such that

−H(t, x,0) ≤ αr(t) a.e. t ∈ (0, T ), |x| ≤ r, (4.87)

H(t, x,w) ≤ βr(t) a.e. t ∈ (0, T ), |x| ≤ r, |w| ≤ r. (4.88)

Proof The function H(t, x,p) is convex in p and concave in x. Let x1, . . . , xn+1 be
such that the n-dimensional simplex generated by these points contains the ball of
radius r centered at the origin. Since, by assumption (k), H(t, xi,0) ∈ L1(0, T ) for
all i, by convexity of x → −H(t, x,0) we get (4.87). Similarly, if w1, . . . ,wm+1
generates an m-dimensional simplex containing {w ∈ R

m; |w| ≤ r}, we have by the
convexity of w → H(t, x,w) that

H(t, x,w) ≤ sup
i

H(t, y,wi) ≤ sup
i

sup
|y|≤r

H(t, y,wi) for |x|, |w| ≤ r.

Since, by hypothesis (k), sup‖x‖≤r H(t, y,wi) = H(t, xi,wi) ∈ L1(0, T ), the latter

implies (4.88). In particular, it follows by (4.87) and (4.88) that

sup
{|v|; v ∈ ∂pH(t, y,0)

} ≤ β(t) a.e. t ∈ (0, T ), (4.89)

where β ∈ L1(0, T ).
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Indeed, by the definition of ∂pH , we have

H(t, y,0) ≤ H(t, y,w) − v · w, ∀w ∈R
m,

for every v ∈ ∂pH(t, y,0). This yields

‖v‖ ≤ H(t, y,w) − H(t, y,0) ≤ β(t), ‖w‖ = 1.

Now, coming back to the proof of Theorem 4.11, we note first that, by (4.74), we
have

L̃(t, y, v) = −H(t, y,0), ∀v ∈ ∂pH(t, y,0).

Then, by (4.89), we see that there exist the functions α,β ∈ L1(0, T ) independent
of w and vw : [0, T ] →R

m measurable such that |vw(t)| ≤ β(t) a.e. t ∈ (0, T ) and

L
(
t, x∗(t) + ρw,vw(t)

) ≤ α(t), a.e. t ∈ (0, T ), |w| ≤ 1. (4.90)

By (4.81) and (4.82) we see that

(
p′

λ + A∗(t)pλ

) · (xλ − x∗ − ρw) + (
B∗pλ − εηλ − λ

1
2 ξλ

) · (uλ − vw)

≥ L̃λ(t, xλ,uλ) − L̃λ(t, x
∗ + ρw,vw)

≥ L̃λ(t, xλ,uλ) − α(t), a.e. t ∈ (0, T ).

Since xλ → x∗ uniformly on [0, T ], the latter yields

∣
∣p′

λ(t) + A∗(t)pλ(t)
∣
∣ ≤ C

(
α(t) − L̃λ

(
t, xλ(t), uλ(t)

))

+ (∣
∣pλ(t)

∣
∣ + ε + λ

1
2
)(∣

∣uλ(t)
∣
∣ + β(t)

)

a.e. ∈ (0, T ). (4.91)

Since, as easily seen by (4.78) and by Lemma 4.14,

∫ t

0
L̃λ

(
s, xλ(s), uλ(s)

)
ds ≥ C, ∀λ > 0, t ∈ [0, T ],

and {|uλ|} is weakly compact in L1(0, T ), the previous inequality implies via Gron-
wall’s Lemma that

∣
∣pλ(t)

∣
∣ ≤ C, ∀λ > 0, t ∈ [0, T ].

We have also

‖p′
λ‖L1(0,T ;Rn) ≤ C, ∀λ > 0,

and so, {pλ} is compact in C([0, T ];Rn). By (4.91), we see also via the Dunford–
Pettis theorem that {p′

λ} is weakly compact in L1(0, T ;Rn). Hence, on a subse-
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quence, we have

pλ(t) → p(t) uniformly on [0, T ],
p′

λ → p′ weakly in L1
(
0, T ;Rn

)
,

ηλ → ηε weak-star in L∞(
0, T ;Rm

)
,

∇xL̃λ(t, xλ,uλ) → q1 weakly in L1
(
0, T ;Rn

)
,

∇uL̃λ(t, xλ,uλ) → q2 weak-star in L∞(
0, T ;Rm

)
,

where p = pε .
Now, from the inequality

∫ T

0
L̃λ(t, xλ,uλ)dt ≤

∫ T

0
L̃λ(t, x,u)dt

+
∫ T

0

(∇xL̃λ(t, xλ,uλ) · (xλ − x)

+ ∇uL̃λ(t, xλ,uλ) · (uλ − u)
)

dt,

∀(x,u) ∈ L∞(
0, T ;Rn

) × L1(0, T ;Rm
)
,

we get
∫ T

0
L̃(t, x∗, u∗)dt ≤

∫ T

0
L̃(t, x, u)dt +

∫ T

0

(
q1 · (x∗ − x) + q2 · (u∗ − u)

)
dt,

for all (x,u) ∈ L∞(0, T ;Rn) × L1(0, T ;Rm) and this implies, as in the previous
case, that

(
q1(t), q2(t)

) ∈ ∂L̃
(
t, x∗(t), u∗(t)

)
a.e. t ∈ (0, T ).

Then, letting λ → 0 into (4.81) and (4.82), we get

p′ + A∗(t)p ∈ ∂xL(t, x∗, u∗) a.e. t ∈ (0, T ), (4.92)

B∗(t)p(t) ∈ ∂uL
(
t, x∗(t), u∗(t)

) + NU(t)

(
u∗(t)

) + εηε(t)

a.e. t ∈ (0, T ). (4.93)

Next, letting λ → 0 into system (4.83) and taking into account that ∇(�̃i )λ ∈
∂�̃i((I + λ∂�̃i)

−1), it follows by Lemma 4.13 and by relations (4.79) that

p(0) ∈ ∂�̃0
(
x∗(0)

)
, p(T ) ∈ −∂�̃1

(
x∗(T )

)
.

Since ∂�̃i(x) = ∂�i(x) + NCi
(x), i = 0,1, we get

p(0) ∈ ∂�0
(
x∗(0)

) + NC0

(
x∗(0)

);
−p(T ) ∈ ∂�1

(
x∗(T )

) + NC1

(
x∗(T )

)
.

(4.94)

Here, as well as in (4.93), we have used the additivity formula for subdifferentials
(Corollary 2.63).
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Now, to conclude the proof, we let ε → 0 into the above equations. Indeed, if we
denote by pε the solution to (4.92)–(4.94), that is,

(
p′

ε + A∗(t)pε,B
∗(t)pε − εηε

) ∈ ∂L̃(t, x∗, u∗) a.e. in (0, T ), (4.95)

pε(0) ∈ ∂�0
(
x∗(0)

) + NC0

(
x∗(0)

)
,

−pε(T ) ∈ ∂�1
(
x∗(T )

) + NC1

(
x∗(T )

)
,

(4.96)

we have, as above,

pε(0) · (x∗(0) − x(0) − ρw
) ≥ �0

(
x∗(0)

) − �0
(
x(0) − ρw

)
,

where (x,u) is as in hypothesis (kkk). This yields

ρ
∥
∥pε(0)

∥
∥ ≤ ρε(0) · (xε(0) − x(0)

) + C

≤ −�1
(
x∗(T )

) + �1
(
x(T )

)

+
∫ T

0

(
L(t, x,u) − L(t, x∗, u∗)

)
dt + ε

∫ T

0
‖u∗ − u‖dt.

Hence, {pε(0)} is bounded in R
n and, arguing as above, we find by (4.90) and from

the inequality

−(
p′

ε + A∗(t)pε

) · w + (
B∗pε + εηε

) · (uε − v0) ≥ L(t, x∗, u∗) − α(t)

that {pε} is compact in C([0, T ];Rn) and {p′
ε} is weakly compact in L1(0, T ;Rn).

Then, we may pass to the limit to (4.95) and (4.96) to get (4.75)–(4.77). This com-
pletes the proof. �

Remark 4.15 It should be emphasized that Theorem 4.11 cannot be deduced by
Theorem 4.5, which refer to optimal controllers u in Lp(0, T ;U) with p > 1. The-
orem 4.11 extends to the case of state-constraint optimal control problems of the
form (4.5) (see Rockafellar [41]).

4.1.8 The Dual Control Problem

Having in mind the general duality theory developed in Chap. 3, one may speculate
that the dual extremal arc p∗ is itself the solution to a certain control problem. We
see that this is, indeed, the case in a sense which is explained below.

Given the functions L(t) and � defined on E × U (R × E, respectively) and the
closed convex subset K of E, we set

M(t,p, q) = sup
{〈p,v〉 + (q, y) − L(t, y, v); y ∈ K, v ∈ U

}
,

m(p1,p2) = sup
{
(p1, h1) − (p2, h2) − �(h1, h2); h1, h2 ∈ E

}
,

for (p, q) ∈ U∗ × E∗ and (p1,p2) ∈ E∗ × E∗.
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The hypotheses of Sect. 4.1.1 are understood to hold.
In terms of conjugate functions, M(t) : U∗ × E∗ → R

∗
and m : E∗ × E∗ → R

∗

can be written as

M(t,p, q) = (
L(t) + IK

)∗
(q,p),

m(p1,p2) = �∗(p1,−p2).

If ρ ∈ BV([0, T ];E∗) is given, we denote, as usual, by ρ̇ ∈ L1(0, T ;E∗) the weak
derivative of ρ, and by ρs(t) = ρ(t) − ∫ t

0 ρ̇(s)ds the singular part of ρ.

Now, let G0 : BV([0, T ];E∗) →R
∗

be the convex function

G0(ρ) = sup

{∫ T

0
(dρs, x); x ∈ K

}

.

It should be remarked that G0(ρ) = H0(dρs), where H0 : M(0, T ;E∗) → R
∗

is
the support function of K and dρs is the Lebesgue–Stieltjes measure defined by ρs

(see Sect. 1.3.3).
We take as the dual of (P) the following optimization problem:

Minimize

(P∗)
∫ T

0

(
M

(
t, (B∗p)(t), ρ̇(t)

) + (
f (t),p(t)

))
dt + m

(
p(0),p(T )

) + G0(ρ)

over all ρ ∈ BV
([0, T ];E∗) and p : [0, T ] → E∗

subject to p(t) = U∗(T , t)p(T ) −
∫ T

t

U∗(s, t)dρ(s), 0 ≤ t ≤ T .

(4.97)
Here, we agree to consider any ρ ∈ BV([0, T ];E∗) as a left continuous function on
]0, T [. In particular, this implies that p(T ) = p(T − 0).

If there are no state constraints in the primal problem, that is, K = E, then we
take the dual problem to be that of minimizing over the space C([0, T ];E∗) ×
Lp(0, T ;U∗) the functional

∫ T

0

(
M

(
t, (B∗p)(t), v(t)

) + (
f (t),p(t)

))
dt + m

(
p(0),p(T )

)

subject to p′ + A∗(t)p = v(t), 0 ≤ t ≤ T .

(4.98)

Problem (P∗) should be compared with the general dual problem P∗ introduced
in Sect. 3.2.1 and it can be regarded as a control problem with the input v = dρ and
the state equation

p′ + A∗(t)p = dρ on [0, T ].
Now, we discuss the circumstances under which the integral in the dual prob-

lem (P∗) is meaningful for all ρ ∈ BV([0, T ];E∗). The existence of this integral
ought to involve a measurability condition on M(t) of the following type.
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M(t, q(t), v(t)) is a Lebesgue measurable function of t whenever q : [0, T ] →
U∗ and v : [0, T ] → E∗ are Lebesgue measurable.

As pointed out before, there are several notable cases in which this condition may
be derived from Assumption (C), but we omit the details.

By Assumption (C)(iii), we see that, for all q ∈ Lp′
(0, T ;U) and v ∈ L1(0, T ;

E∗), there exists some γ ∈ L1(0, T ), such that

M
(
t, q(t), v(t)

) ≥ γ (t) a.e. t ∈ ]0, T [.

On the other hand, it follows by part (ii) of Assumption (C) that

M
(
t, s0(t), r0(t)

) ≤ g0(t) a.e. t ∈ ]0, T [.

It follows from the above inequalities that the functional

∫ T

0

(
M

(
t, (B∗p)(t), ρ̇(t)

) + (
f (t),p(t)

))
dt

is well defined (that is, equal either to a real number or +∞) and nonidentically
+∞.

In passing, we remark that the dual problem (P∗), as well as the primal prob-
lem (P), involves implicit constraints on the control ρ

ρ̇(t) ∈ W
(
t, p(t)

)
a.e. t ∈ ]0, T [,

where

W(t,p) = {
v ∈ E∗; M

(
t, (B∗p)(t), v

)
< +∞}

.

Similarly, there is the end-point constraint

(
p(0),p(T )

) ∈ D(m) = {
(p1,p2) ∈ E∗ × E∗; m(p1,p2) < +∞}

.

Now, we are ready to formulate the duality theorem.

Theorem 4.16 Let the assumptions of Theorem 4.5 be satisfied. Then the pair
(x∗, u∗) ∈ C([0, T ];E∗) × Lp(0, T ;U∗) is optimal for problem (P) if and only if
the dual problem (P∗) has a solution p∗ such that

∫ T

0
L(t, x∗, u∗)dt +

∫ T

0

(
M(t,B∗p∗, ρ̇) + (

f (t),p∗(t)
))

dt

�
(
x∗(0), x∗(T )

) + m
(
p∗(0),p∗(T )

) + G0(ρ) = 0. (4.99)

Furthermore, the function p∗ satisfies, along with w(t) = ρ(t)− ∫ T

0 q(s)ds and x∗,
u∗, (4.17)–(4.21).
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Proof Let (x∗, u∗) be optimal in problem (P) and let p∗ be a dual extremal arc. By
virtue of the conjugacy relation (4.75), the transversality condition (4.21) is satisfied
if and only if

�
(
x∗(0), x∗(T )

)+m
(
p∗(0),p∗(T )

) = (
x∗(0),p∗(0)

)− (
x∗(T ),p∗(T )

)
, (4.100)

while, for arbitrary y ∈ C([0, T ];E) and p̃ : [0, T ] → E∗, it would be true that

�
(
y(0), y(T )

) + m
(
p̃(0), p̃(T )

) ≥ (
y(0), p̃(0)

) − (
y(T ), p̃(T )

)
. (4.101)

Similarly, since by (4.20) and (4.25)

(q + ẇ,B∗p∗) ∈ ∂
(
L(t, x∗, u∗) + IK(x∗)

)
a.e. on ]0, T [,

it follows by (4.74) that

L
(
t, x∗(t), u∗(t)

) + M
(
t, (B∗p∗)(t), q(t) + ẇ(t)

)

= 〈
(B∗p∗)(t), u∗(t)

〉 + (
x∗(t), q(t) + ẇ(t)

)
a.e. t ∈ ]0, T [, (4.102)

while, for arbitrary (y, v) ∈ H , y ∈ K , p̃ ∈ Lq(0, T ;E∗), 1
p

+ 1
q

= 1 and z :
[0, T ] → E∗, it would be true that

L
(
t, y(t), v(t)

) + M
(
t, (B∗p̃)(t), z(t)

) ≥ 〈
(B∗p̃)(t), v(t)

〉 + (
y(t), z(t)

)

a.e. t ∈ ]0, T [. (4.103)

Integrating both sides of inequality (4.102) and adding (4.100), since, by (4.17)
and (4.18),

∫ T

0

(〈
B∗p∗, u∗(t)

〉 + (
x∗(t), q(t)

))
dt +

∫ T

0

(
dw(t), x∗(t)

) +
∫ T

0

(
f (t),p∗(t)

)
dt

= −(
x∗(0),p∗(0)

) + (
x∗(T ),p∗(T )

)
,

and, by (4.26),

G0(w) =
∫ T

0
(dws, x

∗),

we obtain the equality

∫ T

0
L(t, x∗, u∗)dt + �

(
x∗(0), x∗(T )

)

+
∫ T

0

(
M(t,B∗p∗, q + ẇ) + (p∗, f )

)
dt + m

(
p∗(0),p∗(T )

)

+ G0(w) = 0. (4.104)
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Now, integrating (4.103), where (y, v) ∈ H , y ∈ K , z = ρ̇ and p̃ is the solution
to (4.97), we obtain, after some calculations involving Inequality (4.101),

∫ T

0
L(t, y, v)dt +

∫ T

0

(
M(t,B∗p̃, ρ̇) + (f, p̃)

)
dt

+
∫ T

0
(dρs, y) + �

(
y(0), y(T )

) + m
(
p̃(0), p̃(T )

) ≥ 0.

Along with (4.104), the latter shows that p∗ is a solution to (P∗) corresponding to
ρ = w + ∫ T

0 q ds and equality (4.99) follows.
Conversely, if (p∗, ρ) is an optimal pair for (P∗) satisfying (4.99), it follows

by (4.101) and (4.103) that

L
(
t, x∗(t), u∗(t)

) + M
(
t, (B∗p∗)(t), ρ̇(t)

) = 〈
(B∗p∗)(t), u∗(t)

〉 + (
x∗(t), ρ̇(t)

)

a.e. t ∈ ]0, T [,
�
(
x∗(0), x∗(t)

) + m
(
p∗(0),p∗(T )

) = (
x∗(0),p∗(0)

) − (
x∗(T ),p∗(T )

)
,

and

G0(ρ) =
∫ T

0
(dρs, x

∗).

But, as remarked before, these equations are equivalent to (4.20), (4.21), and (4.19),
where ρ(t) = w(t) + ∫ T

0 q(s)ds. Thus, the proof of Theorem 4.16 is complete. �

Remark 4.17 Of course, the duality Theorem 4.16 remains true under the conditions
of Theorem 4.11.

Remark 4.18 Let us denote by G the functional which occurs in problem (P∗). It is
obvious that one has always the inequality

infF(x,u) ≥ − infG(ρ).

The basic question in the duality theory already discussed in Sect. 3.2.1 is whether
the equality holds in the above relation. Within the terminology introduced in
Sect. 3.2.1 (see Definition 3.40), Theorem 4.16 amounts to saying that problem (P)
is normal. For finite-dimensional control problems of the form (P), it turns out
(Rockafellar [40, 41]) that, if no state constraints are present (that is, K = E), then
under the assumptions of Theorem 4.5 one has

infF(x,u) = −minG(ρ).

Along these lines, a sharper duality result has been obtained by the same author
[44] by formulating the primal problem (P), as well as the dual (P∗), in the space of
functions of bounded variation on [0, T ].
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4.1.9 Some Examples

The following illustrates the kind of problem to which the results of the previous
sections can be applied. The examples we have chosen can be extended in several
directions, but we do not attempt here maximum generality nor claim to be compre-
hensive in any sense.

Example 4.19 Consider an optimal control problem of the following type.

Minimize
∫ T

0
L0

(
x(t), u(t)

)
dt + �0

(
x(0), x(T )

)

in x ∈ C
([0, T ];E)

and u ∈ Lp(0, T ;U) (4.105)

subject to x′ = A(t)x + B(t)u(t), 0 ≤ t ≤ T , (4.106)

x(0) ∈ X0, x(T ) ∈ X1, (4.107)

u(t) ∈ U0 a.e. t ∈ ]0, T [, (4.108)

x(t) ∈ K for every t ∈ [0, T ], (4.109)

where L0 and �0 are lower-semicontinuous, everywhere defined convex functions
on E ×U and E ×E, respectively, U0 is a nonempty, closed convex subset of U and
X0, X1, K are nonempty closed convex subsets of E. (In particular, X0 or X1 may
consist of a single point or all of E.) The operators A(t) : E → E and B(t) : U → E

(0 ≤ t ≤ T ) are assumed to satisfy Hypotheses (A) and (B), respectively. The spaces
E and U are strictly convex and separable along with their duals.

To formulate this as a problem of type (P), we define

L(x,u) =
{

L0(x,u), if u ∈ U0,

+∞, otherwise,

and

�(x1, x2) =
{

�0(x1, x2), if x1 ∈ X0 and x2 ∈ X1,

+∞, otherwise.

In this way, the given optimal control problem is equivalent to minimizing
∫ T

0
L(x,u)dt + �

(
x(0), x(T )

)

over all x ∈ C([0, T ];E) and u ∈ Lp(0, T ;U) subject to the state constraints
(4.106)–(4.109).

As pointed out earlier (see (4.11)), Assumption (C) holds if

lim‖u‖→∞
L(x,u)

‖u‖ = +∞.

(If U0 is bounded, this is trivially satisfied.)
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It may be noted that Dom(�) = X0 × X1. Thus, Assumption (D) requires the
existence of a pair (x,u) ∈ C([0, T ];E) × L1(0, T ;U) satisfying (4.106)–(4.109)
and such that L0(x,u) ∈ L1(0, T ), x(t) ∈ intK for every t ∈ [0, T ]. It is possible to
develop general explicit conditions guaranteeing that such a pair (x,u) exists. For
brevity, our attention is confined to the unconstrained control case U0 = U = E,
B(t) = I and A(t) = A time-independent and dissipative on E. Assume further that
L0(y, v) ∈ L1(0, T ) for all y, v ∈ C([0, T ];E) and

eAt intK ⊂ intK for all t > 0.

Then Hypothesis (D) is implied by the following more easily verified one.

There exist x0 ∈ X0 ∩ intK such that eAT x0 ∈ X1 ∩ intK .

Here is the argument. Define

x(t) = eAt

(
t

T
eAT x0 +

(

1 − t

T

)

x0

)

, t ∈ (0, T ).

Clearly, x(t) ∈ intK for t ∈ [0, T ] and

x ′(t) = Ax(t) + u(t) for t ∈ [0, T ],
where u ∈ C([0, T ];E). Moreover, x(0) ∈ X0, x(T ) ∈ X1 and L0(x,u) ∈ L1(0, T ).

As regards Assumption (E), it requires in this case the existence of a feasible
function y ∈ C([0, T ];E) which satisfies (4.106)–(4.109) and

y(T ) ∈ intX1 (4.110)

or

y(T ) ∈ int
{
h ∈ E; (

y(0), h
) ∈ KL

}
, (4.110′)

where KL is the set of all attainable pairs for the given optimal control problem.
If X1 = E, then (4.110) automatically holds as long as at least one fea-

sible arc exists. If U0 = U = E, B(t) = I and L0(y, v) ∈ L1(0, T ) for all
(y, v) ∈ C([0, T ];E) × Lp(0, T ;E), then KL is just the set of all end-point pairs
(y(0), y(T )) arising from arcs y ∈ C([0, T ];E) which satisfy the condition

y(t) ∈ K for t ∈ [0, T ]. (4.111)

Hence, as may readily be seen, Hypothesis (E) is satisfied by assuming that D(A)∩
X0 ∩ K �= ∅, D(A) ∩ (intX1) ∩ K �= ∅. In fact, y(t) = (1 − t

T
)y0 + t

T
y1, where

y0 ∈ D(A) ∩ X0 ∩ K and y1 ∈ D(A) ∩ (intX1) ∩ K , satisfies conditions (4.110)
and (4.111).

According to the rule of additivity of the subdifferentials (see Corollary 2.63),
(4.20) and (4.21) can be written in this case

q(t) ∈ ∂xL0
(
x(t), u(t)

)
a.e. ∈ ]0, T [,

B∗(t)p(t) ∈ ∂uL0
(
x(t), u(t)

) + N
(
u(t),U0

)
a.e. t ∈ ]0, T [,
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and

(
p(0),−p(T )

) ∈ ∂�0
(
x(0), x(T )

) + (
N0

(
x(0)

)
,N1

(
x(T )

))
,

where N(u,U0),N0(x(0)) and N1(x(T )) are the cones of normals at u, x(0) and
x(T ) to U0, X0 and X1, respectively.

To calculate the dual problem, we assume for simplicity that �0 ≡ 0. Then,
we have

m(p1,p2) = �∗(p1,−p2) = H0(p1) + H1(−p2),

where H0 and H1 are the support functions of X0 and X1, respectively. Next, we
have

M(p,q) = sup
{〈p,u〉 + (q, x) − L0(x,u); x ∈ K, u ∈ U0

}

and, since D(L0) = E ×U , we may use the Fenchel theorem (Theorem 3.54) to get

M(p,q) = inf
{
L0(q − q̃, p − p̃) + HU0(p̃) + HK(q̃); p̃ ∈ U∗, q̃ ∈ E∗},

where HU0 and HK are the support functions of U0 and K , respectively.
Given a closed and convex subset K0 of E, consider the following problem: find

the control function u subject to constraints (4.108) such that x(t, x0, u) ∈ K0 for
all t ∈ [0, T ]. Here, x(t, x0, u) is the solution to (4.106) with initial value condition
(x(0) = x0. The least square approach to this controllability problem leads to an
optimal control problem of the form (4.105)–(4.109), where X0 = {x0}, X1 = E,
�0 ≡ 0, K = E, and

L0(x,u) =
{

αd2(x,K0), if u ∈ U0,

+∞, otherwise.
(4.112)

Here, α > 0 and d2(x,K0) is the distance from x to K0.
The ill-posed problems associated to (4.106) represent another important source

of optimal problems of the form (4.105)–(4.109).

Remark 4.20 If K is a closed convex cone of E, x(0) ∈ K , (I − εA)−1K ⊂ K for
all ε > 0 and B(t)u(t) ∈ K a.e. t ∈ ]0, T [, for all the control functions u which
satisfy condition (4.109), then x(t) ∈ K for all t ∈ [0, T ] and therefore the state
constraints (4.109) become redundant.



4.1 Distributed Optimal Control Problems 283

Example 4.21 Consider the following distributed optimal control problem.

Minimize
∫

Q

g
(
y(t, x), u(t, x)

)
dt dx in y ∈ L2(0, T ;H 1

0 (Ω)
)

and u ∈ L2(Q),

subject to the linear diffusion process described by the heat equation

yt − Δy = u in Q = ]0, T [ × Ω,

y(t, x) = 0 in Σ = ]0, T [ × Γ,

with the constraints

y(0, x) ≥ 0 a.e. x ∈ Ω,
∣
∣u(t, x)

∣
∣ ≤ 1 a.e. (t, x) ∈ Q.

(4.113)

Problems of this type are encountered in the control of industrial heating pro-
cesses in the presence of internal heat sources (see the book of Butkovskiy [20] for
such examples).

We assume that the function g : R × R → R is convex and everywhere finite.
Further, we assume that there exists v0 ∈ L2(Ω) such that |v0(x)| ≤ 1 a.e. x ∈ Ω

and g(y, v0) ∈ L1(Ω) for every y ∈ L2(Ω). As seen in Example 4.19, this implies
that the function L : L2(Ω) × L2(Ω) → R

∗
defined by

L(y, v) =
{∫

Ω
g(y, v)dx, if |v(x)| ≤ 1 a.e. x ∈ Ω,

+∞, otherwise

satisfies assumptions (C).
We place ourselves in the framework of Example 4.19 (problem (4.105)–

(4.109)), where E = U = L2(Ω), B(t) = I , K = E, U0 = {u ∈ L2(Ω); |u(x)| ≤ 1
a.e. x ∈ Ω}, X1 = L2(Ω), X0 = {y ∈ L2(Ω);y(x) ≥ 0 a.e. x ∈ Ω} and A(t) = Δ

with D(A(t)) = H 1
0 (Ω) ∩ H 2(Ω). As a matter of fact, we are in the situation pre-

sented at the end of Sect. 4.1.3, where V = H 1
0 (Ω) and A(t) = Δ.

It is elementary that Assumptions (A), (B), (D) and (E) are satisfied.
Let g̃ :R×R→ R be the extended real-valued function

g̃(y, v) =
{

g(y, v), if |v| ≤ 1,

+∞, otherwise.

By Proposition 2.55, we see that
(
∂L(y, v)

)
(x) = ∂g̃

(
y(x), v(x)

)
a.e. x ∈ Ω,

whereas

∂g̃(y, v) = ∂g(y, v) + {
(0, λv); λ ≥ 0, λ(1 − |v|) = 0

}
.

Next, observe that the cone N0(y) of normals to X0 at y is given by

N0(y) = {
w ∈ L2(Ω); w(x) ≤ 0, w(x)y(x) = 0 a.e. x ∈ Ω

}
.
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Then, by Theorem 4.5 (we give the extremality system in the form (4.23)), the pair
y ∈ L2(0, T ;H 1

0 (Ω)), u ∈ L2(Q) is optimal in problem (4.113) if and only if there
exist p ∈ L2(0, T ;H 1

0 (Ω)) with pt ∈ L2(0, T ;H−1(Ω)) and λ : Q → R
+ such that

pt + Δp ∈ ∂yg(y,u) on Q,

p − λu ∈ ∂ug(y,u) a.e. on Q,

λ
(
1 − |u|) = 0, |u| ≤ 1 a.e. on Q,

y(0, x) ≥ 0, p(0, x) ≤ 0, y(0, x)p(0, x) = 0 a.e. x ∈ Ω,

p(T , x) = 0 a.e. x ∈ Ω.

The dual problem to (4.113) is that of minimizing

∫ T

0
g̃∗(w(t, x),p(t, x)

)
dt dx

over all p ∈ L2(0, T ;H 1
0 (Ω)) and w ∈ L2(Q), subject to the constraints

pt (t, x) + Δp(t, x) = w(t, x) on Q,

p(0, x) ≤ 0, p(T , x) = 0 a.e. on Ω.

To be more specific, let us suppose that g(y, v) = α|y| + |v| for all y and v in R,
where α is a nonnegative constant. Then, as is easily verified,

g∗(q,p) =
{

0, if |q| ≤ α and |p| ≤ 1,

+∞, if |q| > α or |p| > 1,

and, therefore,

g̃∗(q,p) =
{

max(|p| − 1,0), if |q| ≤ α,

+∞, if |q| > α.

Thus, in this case, the dual problem becomes

Minimize
∫ T

0

∫

Ω

max
{∣
∣p(t, x)

∣
∣ − 1,0

}
dt dx

in p ∈ L2(0, T ;H 1
0 (Ω)), subject to the constraints

∣
∣pt (t, x) + Δp(t, x)

∣
∣ ≤ α on Q,

p(0, x) ≤ 0, p(T , x) = 0 a.e. x ∈ Ω.

Example 4.22 In practice, it is usually impossible to apply the control action u(t, x)

in order to influence the state y(t, x) of equation at each point of the spatial do-
main Ω . Usually, what can be expected is that the control can be applied at isolated
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points within the spatial domain. An important feature of this case is that the control
space U is finite-dimensional. As an example, let us briefly discuss the following
variant of the problem presented in Example 4.21.

Minimize
∫ T

0

∫

Ω

g
(
y(t, x), u(t)

)
dt dx over all y ∈ L2(0, T ;H 1

0 (Ω)
)

and u = (u1, . . . , uN ) ∈ L2(0, T ;RN
)

subject to the constraints

yt − Δy =
N∑

j=1

uj (t)χj (x) on Q, y(t, x) = 0 on Σ,

y(0, x) = y0(x) on Ω,
∣
∣ui(t)

∣
∣ ≤ 1 a.e. on ]0, T [, i = 1, . . . ,N.

Here, the function g is finite and convex on R
N+1 and {χj }Nj=1 are the characteristic

functions of a family of disjoint measurable subsets Ωj which cover the domain Ω .
In this case, the control is provided by N heat sources. As already mentioned, this
problem may be written as a problem of the type (P), where E = L2(Ω), U = R

N ,
K = L2(Ω), X1 = L2(Ω), X0 = {y0}, A(t) = Δ and B : RN → L2(Ω) is defined
by

(Bu)(x) =
N∑

j=1

uiχj (x) a.e. x ∈ Ω.

Noticing that B∗v = {∫
Ω

χj (x)v(x)dx}Nj=1, we leave to the reader the calculation
of the optimality system in this case.

Remark 4.23 In Examples 4.21 and 4.22, we may consider more general functions
g : Ω × R × U → ]−∞,+∞], which are measurable in x ∈ Ω , convex and contin-
uous in (y,u) ∈ R × R

N and such that g(x, y, v0) ∈ L1(Ω) for all y ∈ L2(Ω) and
some v0 in the control constraint set.

Example 4.24 We consider the following problem.

Minimize
∫

Q

g
(
y(t, x), u(t, x)

)
dx dt + ϕ0

(
y(T )

)

subject to y ∈ L2(0, T ;H 1
0 (Ω)

)
, yt ∈ L2(0, T ;H−1(Ω)

)
,

u ∈ L2(Q) and yt − Δy = u in Q, y = 0 in Σ,

y(0, x) = y0(x), x ∈ Ω,
∫

Ω

F
(
x,∇xy(t, x)

)
dx ≤ 0, ∀t ∈ [0, T ].

(4.114)



286 4 Convex Control Problems in Banach Spaces

Here, ϕ0 : H 1
0 (Ω) → R

∗
, g : R×R → R

∗
are lower-semicontinuous convex func-

tions and F : Ω ×R
n → R is a normal convex integrand having the property that

F(x, z) ∈ L1(Ω) for every z ∈ (L2(Ω))n. In particular, this implies that the function
ψ : H 1

0 (Ω) → R,

ψ(y) =
∫

Ω

F
(
x,∇y(x)

)
dx

is convex and continuous.
Problem (4.114) can be written in the form (P), where

E = H 1
0 (Ω), U = L2(Ω) and K = {

y ∈ H 1
0 (Ω); ψ(y) ≤ 0

}
,

L(y,u) =
∫

Ω

g
(
y(x),u(x)

)
dx, ∀y ∈ H 1

0 (Ω), u ∈ L2(Ω),

�(y1, y2) =
{

ϕ0(y2), if y1 = y0,

+∞, otherwise.

Assumptions (A), (B), (C) and (D) are obviously satisfied if we impose the following
two conditions.

(a) There is u0 ∈ L2(Ω) such that g(y,u0) ∈ L1(Ω) for every y ∈ H 1
0 (Ω).

(b) There is at least one feasible function ỹ such that ỹ(0) = y0, ϕ0 is bounded on
a neighborhood of ỹ(T ) ∈ H 1

0 (Ω) and ψ(ỹ(t)) < 0 for t ∈ [0, T ].
Then, according to Theorem 4.5, the pair (y,u) is optimal in problem (4.114) if
and only if there exist the functions q ∈ L1(0, T ;H−1(Ω)), q0 ∈ H−1(Ω), w ∈
BV([0, T ];H−1(Ω)), p ∈ L2(Q)∩C([0, T ];H−1(Ω))+ BV([0, T ];H−1(Ω)) sa-
tisfying the system

pt + Δp = q + dw in [0, T ],
p(T − 0) = q0 + w(T − 0) − w(T ),
(
q(t, x),p(t, x)

) ∈ ∂g
(
y(t, x), u(t, x)

)
a.e. (t, x) ∈ Q,

q0 ∈ −∂ϕ0
(
y(T )

)
.

Taking into account the special form of the set

K = {
ỹ ∈ C

([0, T ];H 1
0 (Ω)

)
,ψ

(
y(t)

) ≤ 0, ∀t ∈ [0, T ]},

we see that the measure dw ∈ M([0, T ];H−1(Ω)) can be expressed as

dw = {
λ∂Φ(y), λ ≥ 0, λΦ(y) = 0

}
,

where Φ(y) = sup{ψ(y(t)); t ∈ [0, T ]}. We may use this formula to express dw in
terms of the gradient of r(x, ·) as in the work [35] by Mackenroth.
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4.1.10 The Optimal Control Problem in a Duality Pair
V ⊂ H ⊂ V ′

Consider problem (P) in the special case X = V , X′ = V ′, where V is a reflexive Ba-
nach space such that V ⊂ H ⊂ V ′ algebraically and topologically. Here, H is a real
Hilbert space with the norm | · | and scalar product (·, ·). The norm of V is denoted
‖·‖V and V ′ is the dual of V with the norm ‖·‖V ′ . The duality V ′(·, ·)V , which coin-
cides with the scalar product (·, ·) of H on H ×H , is again denoted by (·, ·). Assume
also that V and V ′ are strictly convex. The family of the operators {A(t);0 ≤ t ≤ T }
is assumed to satisfy Assumptions (j), (jj) and (jjj) of Proposition 1.149. For sim-
plicity, we take here L : (0, T ) × V × U →R

∗
and � : H × H → R

∗
of the form

L(t, y,u) = g(t, y) + h(t, u), ∀y ∈ V, u ∈ U,

�(y1, y2) = ϕ0(y2) + I{y0}(y1), ∀y1, y2 ∈ H,

where g : (0, T )×V →R, h : (0, T )×U → R, and ϕ0 : H → R satisfy the follow-
ing conditions.

(l) g(t, ·) is convex and continuous on V , measurable in t for every y ∈ V and
α1 ≤ g(t, y) ≤ α2‖y‖2

V + α3, ∀y ∈ V , for αi ∈ R, i = 1,2,3.
(ll) h(t, ·) is convex and lower-semicontinuous on U and measurable in t . There

are p ≥ 2 and α̃2 > 0, α̃3 ∈ R such that h(t, u) ≥ α̃2‖u‖2
U + α̃3, ∀u ∈ U ,

t ∈ (0, T ).
(lll) ϕ0 is convex and continuous on H .

(llll) B(t) ∈ L(U,V ′) a.e. t ∈ (0, T ) and ‖B(t)‖L(U,V ′) ∈ L∞(0, T ). Here, U is a
real Hilbert space with the norm ‖ · ‖U and the scalar product (·, ·)U .

Then, problem (P) is, in this case, of the form

(P0) Min

{∫ T

0

(
g
(
t, y(t)

) + h
(
t, u(t)

))
dt + ϕ0

(
y(T )

)
}

subject to y ′ = A(t)y + B(t)u + f (t), t ∈ (0, T ), y(0) = y0.

Theorem 4.25 Assume that conditions (l)–(llll) hold and that f ∈ L2(0, T ;V ′),
y0 ∈ H . Then, there is at least one optimal pair (y∗, u∗) ∈ (C([0, T ];H) ∩
L2(0, T ;V )) × L2(0, T ;U) in problem (P0). Moreover, any such a pair is a so-
lution to the Euler–Lagrange system

(y∗)′ = A(t)y∗ + B(t)u∗ + f a.e. t ∈ (0, T ), (4.115)

p′ = −A∗(t)p + η(t) a.e. t ∈ (0, T ),

y∗(0) = y0, p(T ) ∈ −∂ϕ0
(
y∗(T )

)
, (4.116)

u∗(t) ∈ ∂h
(
t,B∗p(t)

)
a.e. t ∈ (0, T ), (4.117)

where η ∈ L2(0, T ;V ′) and
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η(t) ∈ ∂g
(
t, y∗(t)

)
a.e. t ∈ (0, T ). (4.118)

Equations (4.115)–(4.118) are also sufficient for optimality.

Proof Existence of an optimal pair follows by a standard device described in Propo-
sition 4.1 and so it is outlined only. Namely, consider a sequence (yn,un) satisfying
the equation

y ′
n = A(t)yn + B(t)un + f a.e. t ∈ (0, T ),

yn(0) = y0,
(4.119)

and such that

d ≤
∫ T

0

(
g(t, yn) + h(t, un)

)
dt + ϕ0

(
yn(T )

) ≤ d + 1

n
, (4.120)

where d is the infimum in problem (P). By estimates (l), (ll) and (lll), we see that
{un} is bounded in Lp(0, T ;U) and, by (4.119), it follows that

‖yn‖2
L2(0,T ;V )

+ ‖y′
n‖L2(0,T ;V ′) ≤ C.

Hence, on a subsequence, again denoted n, we have

un → u∗ weakly in L2(0, T ;U),

yn → y∗ weakly in L2(0, T ;V ),

y′
n → (y∗)′ weakly in L2(0, T ;V ′),

yn(T ) → y∗(T ) weakly in H,

because, by (4.119) and by assumptions (j)–(jjj) of Proposition 1.149,

1

2

(∣∣yn(t)
∣
∣2 − |y0|2

) =
∫ t

0

(
A(s)yn, yn

)
ds +

∫ t

0

(
B(s)un, yn

)
ds

+
∫ t

0

(
f (s), yn(s)

)
ds

≤ C

∫ t

0
‖un‖U‖yn‖V ds − ω

∫ t

0

∥
∥yn(s)

∥
∥2

V
ds + α

∫ t

0
|yn|2 ds.

Since, as seen earlier, the convex functions y → ∫ T

0 ϕ(t, y)dt , and u → ∫ T

0 h(t, u)dt

are convex and lower-semicontinuous in L2(0, T ;V ) and L2(0, T ;U), respectively,
they are weakly lower-semicontinuous and, therefore,

lim inf
n→∞

∫ T

0
g(t, yn)dt ≥

∫ T

0
g(t, y∗)dt,

lim inf
n→∞

∫ T

0
h(t, un)dt ≥

∫ T

0
h(t, u∗)dt.
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Similarly,

lim inf
n→∞

∫ T

0
g
(
yn(T )

) ≥ g
(
y∗(T )

)
dt.

Then, by (4.120), we see that (y∗, u∗) is optimal in problem (P).
Necessary conditions of optimality. Let (y∗, u∗) be optimal in problem (P). Then

consider, as in the proof of Theorem 4.5, the approximating optimal control problem

Min

{∫ T

0

(

gλ(t, y) + hλ(t, u) + 1

2
‖u − u∗‖2

U

)

dt + (ϕ0)λ
(
y(T )

);

y′ = A(t) + B(t)u + f (t), y(0) = y0

}

, (4.121)

where (ϕ0)λ and hλ(t, ·), gλ are, as in the previous cases, regularizations of ϕ0,
h(t, ·) and g, respectively, that is,

gλ(t, y) = inf

{
1

2λ
‖y − z‖2

V + g(t, z); z ∈ V

}

,

hλ(t, u) = inf

{
1

2λ
‖u − v‖2

U + h(t, v); v ∈ U

}

,

(ϕ0)λ(y) = inf

{
1

2λ
|y − z|2 + ϕ0(z); z ∈ H

}

.

As seen earlier, problem (4.121) has at least one optimal pair (yλ,uλ) and, arguing
as in the proof of Theorem 4.5, it follows that (recall that gλ(t, ·), hλ(t, ·), gλ(t, ·)
are Gâteaux differentiable)

∫ T

0

(∇gλ

(
t, yλ(t)

)
, z(t)

) + (∇hλ

(
t, uλ(t)

)
, v(t)

)

+ ((
uλ(t) − u∗(t), v(t)

)
U

)
dt + (∇(ϕ0)λ

(
yλ(T )

)
, z(T )

) ≥ 0, (4.122)

for all v ∈ L2(0, T ;U) and z ∈ C([0, T ];H) ∩ L2(0, T ;V ) solution to the system
in variations

z′ = A∗(t)z + B(t)v, t ∈ (0, T ); z(0) = 0.

Then, if we consider pλ ∈ C([0, T ];H) ∩ L2(0, T ;V ), dpλ

dt
∈ L2(0, T ;V ′) the so-

lution to the backward dual system

p′
λ = −A∗(t)pλ + ∇gλ(t, yλ) a.e. t ∈ (0, T ),

pλ(T ) = −∇(ϕ0)λ
(
yλ(T )

)
,

(4.123)

which exists in virtue of assumptions (l) ∼ (lll), we get by (4.122) that
∫ T

0

((∇hλ

(
t, uλ(t)

) + (
uλ(t) − u∗(t)

)) − B∗(t)pλ(t)
)
v(t)dt = 0,
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for all v ∈ L2(0, T ;U). Hence,

B∗(t)pλ(t) = ∇hλ

(
t, uλ(t)

) + (
uλ(t) − u∗(t)

)
a.e. t ∈ (0, T ). (4.124)

On the other hand, as seen in the proof of Theorem 4.5, we have for λ → 0

uλ → u∗ strongly in L2(0, T ;U) (4.125)

and, therefore,

yλ → y∗ strongly in L2(0, T ;V ) ∩ C
([0, T ];H )

,

dyλ

dt
→ dy∗

dt
strongly in L2(0, T ;V ′).

(4.126)

Recalling that (Theorem 2.58)

1

2λ

∣
∣(I + λϕ0)

−1yλ(T ) − yλ(T )
∣
∣2 + ϕ0

(
(I + λ∂ϕ0)

−1yλ(T )
) = (ϕ0)λ

(
yλ(T )

)
,

1

2λ

∥
∥(

Λ + λ∂g(t)
)−1

yλ(t) − yλ(t)
∥
∥2

V
+ g

(
t,

(
Λ + λ∂g(t)

)−1
yλ(t)

) = gλ

(
t, yλ(t)

)
,

where Λ : V → V ′ is the duality mapping of V , by (4.126) we infer that, for λ → 0,
(
(I + λ∂ϕ0)

−1yλ(T )
) → y∗(T ) strongly in H, (4.127)

(
Λ + λ∂g(t)

)−1
yλ → y∗ strongly in L2(0, T ;V ). (4.128)

Recalling that ϕ0 is continuous on H and

∇(ϕ0)λ
(
yλ(T )

) ∈ ∂ϕ0
(
(I + λ∂ϕ0)

−1yλ(T )
)
,

it follows, by (4.128), that {∇(ϕ0)λ(yλ(T ))} is bounded in H and so, on a subse-
quence, again denoted {λ},

∇(ϕ0)λ
(
yλ(T )

) → ξ ∈ ∂ϕ0
(
y∗(T )

)
weakly in H. (4.129)

On the other hand, by the inequality
(∇gλ

(
t, yλ(t)

)
, yλ(t) − θ

) ≥ gλ

(
t, yλ(t)

) − gλ(t, θ), ∀θ ∈ V, t ∈ (0, T ),

we get for ‖θ‖V = ρ‖∇gλ(t, yλ(t))‖V ′

ρ
∥
∥∇gλ

(
t, yλ(t)

)∥∥
V ′ ≤ gλ(t, θ) + (∇gλ

(
t, yλ(t)

)
, yλ(t)

)

≤ Cρ2
∥
∥∇gλ

(
t, yλ(t)

)∥
∥

V ′ +
∥
∥∇gλ

(
t, yλ(t)

)∥
∥

V ′
∥
∥yλ(t)

∥
∥

V
.

This yields
∥
∥∇gλ(t, yλ)

∥
∥2

V ′ ≤ C1‖yλ‖2
V + C2
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and, therefore, by (4.126) and (4.128), we have

∇gλ(t, yλ) → η weakly in L2(0, T ;V ′), η(t) ∈ ∂g
(
t, y(t)

)
, a.e. t ∈ (0, T ).

Then letting λ tend to zero in (4.123) and (4.124) we obtain (4.115)–(4.118), as
claimed. The fact that (4.115)–(4.118) are sufficient for optimality is immediate,
and therefore we omit the proof. �

The Dual Problem We associate with (P0) the dual problem (see Problem (P∗)
in Sect. 4.1.7)

(P∗
0) Min

{∫ T

0

(
h∗(t,B∗(t)p

) + g∗(t, v) + (
f (t),p

))
dt + (

y0,p(0)
)

+ ϕ∗
0

(−p(T )
); p′ = −A∗(t)p + v

}

,

where g∗(t, ·) : V ′ →R, h∗(t, ·) : U →R and ϕ∗
0 : H →R

are the conjugates of g(t, ·), h(t, ·) and ϕ0, respectively.

We have the following theorem.

Theorem 4.26 Under assumptions (l)–(llll), (y∗, u∗) is optimal in (P0) if and only
if Problem (P∗

0) has a solution (p∗, v∗) and

min(P0) + min(P∗
0) = 0.

The proof is identical with that of Theorem 4.16 and therefore it will be omitted.

Example 4.27 Theorems 4.25 and 4.26 can be applied neatly to an optimal control
problem of the form

Minimize
∫

Q

g0(t, y)dx dt +
∫

Σ

h(t, u)dt dx +
∫

Ω

ϕ0
(
y(T , x)

)
dx, u ∈ L2(Σ)

subject to
∂y

∂t
− Δy = f in Q = (0, T ) × Ω,

∂y

∂ν
= u on Σ = (0, T ) × ∂Ω,

y(0, x) = y0(x) in Ω,

where g0(t, ·) : R → R is a convex continuous function with quadratic growth,
that is,

g0(t, r) ≤ C1|r|2 + C2, ∀r ∈R, t ∈ (0, T ),

and h(t, ·) : R →R is convex, lower-semicontinuous and

h(t, u) ≥ C3|u|2 + C4, ∀u ∈ R, where C3 > 0.
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In fact, if we take V = H 1(Ω), H = L2(Ω), U = L2(∂Ω), A(t) : V → V ′ defined
by

(
A(t)y,ψ

) =
∫

Ω

∇y · ∇ψ dx, ∀ψ ∈ H 1(Ω)

and B(t) : L2(∂Ω) → V ′ = (H 1(Ω))′ given by

(
B(t)u,ψ

) =
∫

∂Ω

uψ dx, ∀ψ ∈ H 1(Ω).

Then the corresponding Euler–Lagrange system is

∂p

∂t
= −Δp + ∂g0(t, y) in Q,

∂p

∂ν
= 0 on Σ,

p(T , x) = −∂ϕ0
(
y(T , x)

)
x ∈ Ω,

u∗(t) = ∂h∗(t,B∗p(t)
) = ∂h∗(t, p(t)|∂Ω

)
,

and the corresponding dual problem is

Min

{∫

Q

(
g∗

0(t, v) − f v
)

dx dt +
∫

Σ

h∗(t,p)dx dt +
∫

Ω

ϕ∗
0

(−p(T , x)
)

dx

+
∫

Ω

y0p(0, x)dx; ∂p

∂t
= −Δp + v in Q; ∂p

∂ν
= 0 on Σ

}

.

Another example is that of the optimal control problem governed by the equation

∂y

∂t
− Δy =

m∑

i=1

ui(t)δ(xi) in (0, T ) × (a, b),

y(0, x) = y0(x), x ∈ (a, b); y(t, a) = y(t, b) = 0,

where δ(xi) is the Dirac measure concentrated in xi ∈ (a, b), i = 1, . . . ,m. In this
case, U = R

m, V = H 1
0 (a, b), V ′ = H−1(a, b), A = −Δ, Bu = ∑m

i=1 uiδ(xi).
Now, we use the results of this section to indicate a variational approach to the
Cauchy problem in a Banach space.

A Variational Approach to Time-Dependent Cauchy Problem Consider the
nonlinear Cauchy problem

y′(t) + ∂ϕ
(
t, y(t)

) � f (t), a.e. t ∈ (0, T ),

y(0) = y0,
(4.130)
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in a reflexive Banach space V with the dual V ′. More precisely, assume that V and
V ′ are in the variational position

V ⊂ H ⊂ V ′,

where H is a real Hilbert space and the above inclusions are continuous and dense.
As above, the norms of V,H,V ′ are denoted ‖ · ‖V , | · |H , ‖ · ‖V ′ . As regards ϕ, the
following hypotheses are assumed.

(m) ϕ : [0, T ] × V → R is measurable in t and convex, continuous in y on V .
There are αi > 0, γi ∈R, i = 1,2, such that

γ1 + α1‖u‖p1
V ≤ ϕ(t, u) ≤ γ2 + α2‖u‖p2

V , ∀u ∈ V, t ∈ (0, T ),

where 2 ≤ p1 ≤ p2 < ∞.
(mm) There are C1,C2 ∈R

+ such that

ϕ(t,−u) ≤ C1ϕ(t, u) + C2, ∀u ∈ V.

We have the following theorem.

Theorem 4.28 Under the above hypotheses, for each y0 ∈ V and f ∈ Lp′
1(0, T ;V ′),

1
pi

+ 1
p′

i

= 1, (4.130) has a unique solution

y∗ ∈ Lp1(0, T ;V ) ∩ C
([0, T ];H ) ∩ W 1,p′

2
([0, T ];V ′). (4.131)

Moreover, y∗ is the solution to the minimizing problem

Min

{∫ T

0

(
ϕ(t, y) + ϕ∗(t, f − y′) − (f, y)

)
dt + 1

2

∣
∣y(T )

∣
∣2
H

;

y ∈ Lp1(0, T ;V ) ∩ W 1,p′
2
([0, T ];V ′), y(0) = y0

}

. (4.132)

A nice feature of this theorem is not only its generality (which is, however, com-
parable with the standard existence theorem for nonlinear Cauchy problems of the
form y′ + A(t)y = f (t), where A(t) : V → V ′ is monotone, demicontinuous and
coercive) (see, e.g., Lions [33] or Barbu [6, 13]), but, first of all, that it reduces
the Cauchy problem (4.130) to a convex optimization problem with all the conse-
quences deriving from such an identification.

Proof of Theorem 4.28 Translating y0 into origin, we may assume that y0 = 0.
Recalling the conjugacy formulas from Proposition 2.2, we may, equivalently,
write (4.130) as

ϕ
(
t, y(t)

) + ϕ∗(t, f (t) − y ′(t)
) = (

f (t) − y′(t), y(t)
)

a.e. t ∈ (0, T ),
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while

ϕ
(
t, z(t)

) + ϕ∗(t, f (t) − z′(t)
) − (

f (t) − z′(t), z(t)
) ≥ 0 a.e. t ∈ (0, T ),

for all z ∈ Lp1(0, T ;V ) ∩ W 1,p′
2([0, T ];V ′). (Here, ϕ∗ is the conjugate of ϕ as

function of y.) Therefore, we are lead to the optimization problem

Min

{∫ T

0

(
ϕ
(
t, y(t)

) + ϕ∗(t, f (t)−y ′(t)
) − (

f (t)−y ′(t), y(t)
))

dt;

y ∈ Lp1(0, T ;V ) ∩ W 1,p′
2
([0, T ];V ′), y(0) = 0

}

. (4.133)

However, since the integral
∫ T

0 (y′(t), y(t))dt might not be well defined, taking into
account that (see Proposition 1.12)

1

2

d

dt

∥
∥y(t)

∥
∥2

V
= (

y′(t), y(t)
)

a.e. t ∈ (0, T ),

for each y ∈ Lp1(0, T ;V ) ∩ W 1,p′
2([0, T ];V ′), we shall replace (4.133) by the fol-

lowing convex optimization problem:

Min

{∫ T

0

(
ϕ
(
t, y(t)

)) + ϕ∗(t, f (t) − y ′(t)
) − (

f (t), y(t)
)

dt + 1

2

∥
∥y(T )

∥
∥2

V
;

y ∈ Lp1(0, T ;V ) ∩ W 1,p′
2
([0, T ];V ′), y(0) = 0, y(T ) ∈ H

}

, (4.134)

which is well defined because, as easily follows by hypothesis (m), we have, by
virtue of the conjugacy formulas,

γ 1 + α1‖θ‖p′
2

V ′ ≤ ϕ∗(t, θ) ≤ γ 2 + α2‖θ‖p′
1

V ′, ∀θ ∈ V ′ a.e. t ∈ (0, T ). (4.135)

We are going to prove now that problem (4.134) has a solution y∗, which is also a
solution to (4.130). To this end, we set d∗ = inf (4.134) and choose a sequence

{yn} ⊂ Lp1(0, T ;V ) ∩ W 1,p′
2
([0, T ];V ′)

such that yn(0) = 0 and

d∗ ≤
∫ T

0

(
ϕ
(
t, yn(t)

) + ϕ∗(t, f (t) − y ′
n(t)

) − (
f (t), yn(t)

))
dt + 1

2

∣
∣yn(T )

∣
∣2
H

≤ d∗ + 1

n
, ∀n ∈N. (4.136)

By hypothesis (m) and by (4.135), we see that

‖yn‖Lp1 (0,T ;V ) + ‖y′
n‖L

p′
2 (0,T ;V ′) ≤ C, ∀n ∈N,
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and, therefore, on a subsequence, we have

yn → y∗ weakly in Lp1(0, T ;V ),

y ′
n → (y∗)′ weakly in Lp′

2(0, T ;V ′),

yn(T ) → y∗(T ) weakly in H.

(4.137)

Inasmuch as the functions y → ∫ T

0 ϕ(t, y(t))dt , z → ∫ T

0 ϕ∗(t, f (t) − z′(t))dt

and y1 → |y1|2H are weakly lower-semicontinuous in Lp1(0, T ;V ), Lp′
2(0, T ;V ′)

and H , respectively, letting n tend to zero into (4.136), we see that

∫ T

0

(
ϕ
(
t, y∗(t)

) + ϕ∗(t, f (t) − (y∗)′(t)
) − (

f (t), y∗(t)
))

dt

+ 1

2

∣
∣y∗(T )

∣
∣2
H

= d∗, (4.138)

that is, y∗ is solution to (4.134). Now, we are going to prove that d∗ = 0. To this
aim, we invoke the duality Theorem 4.16. Namely, we have

d∗ + min(P∗
1) = 0, (4.139)

where (P∗
1) is the dual optimization problem corresponding to (4.134), that is,

(P∗
1) Min

{∫ T

0

(
ϕ
(
t,−p(t)

) + ϕ∗(t, f (t) + p′(t)
) + (

f (t),p(t)
))

dt

+ 1

2

∣
∣p(T )

∣
∣2
H

; p ∈ Lp′
1(0, T ;V ) ∩ W 1,p′

2(0, T ;V ′)
}

.

Clearly, for p = −y, we get min(P∗
1) ≤ d∗ and so, by (4.139), we see that

min(P∗
1) ≤ 0. (4.140)

On the other hand, if p̃ is optimal in (P∗
1), we have

(p̃′, p̃) ∈ L1(0, T ),

∫ T

0
(p̃′, p̃)dt = 1

2

(∣
∣p̃(T )

∣
∣2
H

− 1

2

∣
∣p̃(0)

∣
∣2
H

)

. (4.141)

Indeed, by Proposition 2.2, we have

−(
p̃′(t), p̃(t)

) ≤ ϕ
(
t,−p̃(t)

) + ϕ∗(t, f (t) + p′(t)
) + (

f (t), p̃(t)
)

a.e. t ∈ [0, T ]
and

(
p̃′(t) + f (t), p̃(t)

) ≤ ϕ
(
t, p̃(t)

) + ϕ∗(t, f (t) + p̃′(t)
)

a.e. t ∈ [0, T ].
Since ϕ(t,−p̃) ∈ L1(0, T ), by hypothesis (mm), it follows that ϕ(t, p̃) ∈ L1(0, T )

too, and therefore (p̃′, p̃) ∈ L1(0, T ), as claimed.
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Now, since

1

2

d

dt

∣
∣p̃(t)

∣
∣2
H

= (
p̃′(t), p̃(t)

)
a.e. t ∈ (0, T ),

we get (4.141), as claimed. This means that

min(P∗
1) =

∫ T

0

(
ϕ
(
t,−p̃(t)

) + ϕ∗(t, f (t) + p̃′(t)
) + (

f (t) + p̃′(t), p̃(t)
))

dt

+ 1

2

∥
∥p̃(0)

∥
∥2

H
≥ 0

by virtue of Proposition 2.2. Then by (4.140), we get d∗ = 0, as claimed.
The same relation (4.141) follows for y∗ and thus

1

2

(∣
∣y∗(t)

∣
∣2
H

− ∣
∣y∗(s)

∣
∣2
H

) =
∫ t

s

(
(y∗)′(τ ), y∗(τ )

)
dτ, ∀0 ≤ s ≤ t ≤ T .

This implies that y ∈ C([0, T ];H) and

1

2

∣
∣y∗(T )

∣
∣2 =

∫ T

0

(
(y∗)′(τ ), y∗(τ )

)
dτ.

Substituting the latter into (4.138), we see that y∗ is solution to (4.130) and also that
∫ T

0

((
ϕ
(
t, y∗(t)

) + ϕ∗(t, f (t) − (y∗)′(t)
) − (

f (t) − (y∗)′(t), y∗(t)
)))

dt = 0.

Hence,

ϕ
(
t, y∗(t)

) + ϕ∗(t, f (t) − (y∗)′(t)
) − (

f (t) − (y∗)′(t), y∗(t)
) = 0 a.e t ∈ (0, T )

and, therefore, (y∗(t))′ + ∂ϕ(t, y∗(t)) � f (t) a.e. t ∈ (0, T ), as claimed.
The uniqueness of a solution y∗ satisfying (4.138) is immediate by monotonicity

of u → ∂ϕ(t, u) because, for two such solutions y∗
1 and y∗

2 , we have therefore

d

dt

∥
∥y∗

1 (t) − y∗
2 (t)

∥
∥2

H
≤ 0 a.e. t ∈ (0, T )

and, since y∗
1 − y∗

2 is H -valued continuous and y∗
1 (T ) − y∗

2 (T ) = 0, we infer that
y∗

1 − y∗
2 ≡ 0, as claimed. This completes the proof of Theorem 4.28. �

4.2 Synthesis of Optimal Control

Consider the unconstrained problem (P) with fixed initial point, that is, the problem
of minimizing

∫ T

0
L

(
t, x(t), u(t)

)
dt + ϕ0

(
x(T )

)
(4.142)
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in all x ∈ C([0, T ];E) and u ∈ Lp(0, T ;U), 2 ≤ p < ∞, subject to

x ′ = A(t)x + B(t)u, 0 ≤ t ≤ T ,

x(0) = x0.
(4.143)

By definition, a feedback control is a function (possibly multivalued) Λ : [0, T ]×
E → U having the property that, for all x0 ∈ E and s ∈ [0, T ], the Cauchy problem

x ′ = A(t)x + B(t)Λ(t, x), s ≤ t ≤ T ,

x(s) = x0,

has a solution (“mild”), x = x(t, s, x0). We call such a feedback control Λ, opti-
mal feedback control or optimal synthesis function provided that, for all s ∈ [0, T ]
and x0 ∈ E, u(t) = Λ(t, x(t, s, x0)) is an optimal control for problem (4.142)
and (4.143) on the interval [s, T ]. The existence and design of optimal feedback
controllers is related to the problem of control in real time of differential systems
which is a fundamental problem in automatic.

This section is concerned with the existence of optimal feedback controls and the
method of dynamic programming, that is, the Hamilton–Jacobi approach to prob-
lem (4.142).

Owing to some delicate technical considerations, we restrict our attention to the
case where L, B and A are independent of t , without, however, losing the essential
features of the general problem.

4.2.1 Optimal Value Function and Existence of Optimal Synthesis

We consider here problem (4.142) and (4.143) where A(t) ≡ A is the infinitesi-
mal generator of a C0-semigroup eAt , B(t) ≡ B is a linear continuous operator
from U to E, ϕ0 is a convex continuous function on E and L(t) = L is a lower-
semicontinuous convex function on E × U .

Further, we assume the following hypothesis.

(C′) The Hamiltonian function H associated to L is everywhere finite on E × U∗.
Moreover, there exist γ > 0, p > 1, and the real numbers α,β such that

L(x,u) ≥ γ ‖u‖p − β|x| + α, ∀x ∈ E, u ∈ U. (4.144)

There exists u0 ∈ U , such that

L(x,u0) < +∞ for all x ∈ E. (4.145)

The spaces E and U are assumed reflexive and strictly convex together with their
duals.
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For every s ∈ [0, T ], define the function ϕ : [0, T ] × E → R

ϕ(s,h) = inf

{∫ T

s

L(x,u)dt + ϕ0
(
x(T )

); x′ = Ax + Bu;x(s) = h,

u ∈ Lp(s, T ;U)

}

, (4.146)

which is called the optimal value function associated with problem (4.142).

Proposition 4.29 For all (s, h) ∈ [0, T ] × E, −∞ < ϕ(s,h) < +∞ and for every
h ∈ E, the infimum defining ϕ(s,h) is attained. For every s ∈ [0, T ], the function
ϕ(s, ·) : E → R is convex and continuous.

Proof Let (s, h) be arbitrary but fixed in [0, T ] × E. By condition (4.145), wee see
that ϕ(s,h) < +∞, while condition (4.144) implies, by virtue of Proposition 4.29
(assumptions (a) and (c) are trivially satisfied here), that the infimum defining
ϕ(s,h) is attained. This implies via a standard argument that, for all s ∈ [0, T ],
the function ϕ(s, ·) is convex and nowhere −∞.

Now, we prove that ϕ(s, ·) is lower-semicontinuous on E. To this end, we con-
sider a sequence {hn} ⊂ E, such that ϕ(s,hn) ≤ M for all n and hn → h, as n → ∞.
Let {xn

s , un
s ) ∈ C([s, T ];E) × Lp(s, T ;U) be such that

ϕ(s,hn) =
∫ T

s

L
(
xn
s , un

s

)
dt + ϕ0

(
xn
s (T )

) ≤ M.

Then, by assumption (4.144), we deduce via Gronwall’s Lemma that {un
s } remains

in a bounded subset (equivalently, weakly compact subset) of Lp(s, T ;U). Thus,
without loss of generality, we may assume that

un
s → us weakly in Lp(s, T ;U)

and, therefore,

xn
s (t) → xs(t) = e(t−s)Ah+

∫ t

s

e(t−τ)ABu(τ)dτ weakly in E for every t ∈ [s, T ].

Since the function (s, u) → ∫ T

s
L(x,u)dt and ϕ0 are weakly lower-semiconti-

nuous on Lp(s, T ;E) × Lp(s, T ;U) and E, respectively, we have

ϕ(s,h) ≤
∫ T

s

L(xs, us)dt + ϕ0
(
xs(T )

) ≤ M,

as claimed. Since ϕ(s, ·) is convex, lower-semicontinuous and everywhere finite
on E, we may conclude that it is continuous (see Proposition 2.16). Thus, the proof
is complete. �
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Let h be arbitrary but fixed in E, and let (xs, us) be an optimal pair in prob-
lem (4.26). In other words,

ϕ(s,h) =
∫ T

s

L(xs, us)dt + ϕ0
(
xs(T )

)
.

As mentioned in Sect. 4.1.1, the condition that −∞ < H < +∞ is more than suffi-
cient to ensure that Assumption (C) of Theorem 4.33 is satisfied. Hence, there exists
a function ps ∈ C([s, T ];E∗) (which is not, in general, uniquely determined) and
qs ∈ Lp(s, T ;E∗) such that

xs(t) = eA(t−s)h +
∫ t

s

eA(t−τ)Bus(τ )dτ, s ≤ t ≤ T , (4.147)

ps(t) = eA∗(T −t)ps(T ) −
∫ T

t

eA∗(τ−t)qs(τ )dτ, s ≤ t ≤ T , (4.148)

ps(T ) ∈ −∂ϕ0
(
xs(T )

)
, (4.149)

(qs,B
∗ps) ∈ ∂L(xs, us) a.e. on ]s, T [. (4.150)

Fixing (y, v) ∈ C([s, T ];E) × Lp(s, T ;U) such that y′ = Ay + Bv on [s, T ] and
y(s) = h, we have by (4.149) and the definition of ∂L

L(xs, us) ≤ L(y, v) + (qs, xs − y) + (
ps,B(us − v)

)
, a.e. t ∈ ]s, T [.

We integrate over [s, T ]. By a straightforward calculation involving (4.147), (4.148),
and Fubini’s theorem, we find that

∫ T

s

L(xs, us)dt ≤
∫ T

s

L(y, v)dt + (
ps(T ), xs(T ) − y(T )

) − (
ps(s), h − h̃

)
,

whereupon by (4.147)–(4.149) we see that

ϕ(s,h) ≤ ϕ
(
s, h̃

) − (
ps(s), h − h̃

)
, ∀h̃ ∈ E. (4.151)

Thus, we have shown that h ∈ D(∂ϕ(s, ·)) and −ps(s) ∈ ∂ϕ(s,h). Let us denote
by M h

s the set of all the dual extremal arcs ps ∈ C([s, T ];E∗) corresponding to
problem (4.146). We have a quite unexpected relationship between M h

s and ∂ϕ(s).

Proposition 4.30 For all s ∈ [0, T ] and h ∈ E, we have

∂ϕ(s,h) = {−ps(s), ps ∈ M h
s

}
. (4.152)

Proof Let A : E → E∗ be the mapping defined by

A h = {−ps(s); p ∈ M h
s

}
.
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We have already seen that A ⊂ ∂ϕ(s, ·). To prove the converse inclusion relation,
it suffices to show that A is maximal monotone, that is, R(Φ + A ) = E∗. For any
h∗

0 ∈ E∗, the equation Φ(h) + A h � h∗
0 can be explicitly written as

y ′ = Ay + Bv on [s, T ], (4.153)

p̃′ = −A∗p̃ + q̃ on [s, T ], (4.154)

(q̃,B∗p̃) ∈ ∂L(y, v) a.e. on ]s, T [, (4.155)

Φ
(
y(s)

) − p̃(s) = h∗
0, p̃(T ) ∈ −∂ϕ0

(
y(T )

)
. (4.156)

(Equations (4.153) and (4.154) must be considered, of course, in the “mild”
sense.) �

Again by Theorem 4.5, system (4.153)–(4.156) has a solution if and only if the
control problem

inf

{∫ T

s

L(y, v)dt + 1

2

∣
∣y(s)

∣
∣2 − (

h∗
0, y(s)

) + ϕ0
(
y(T )

);

v ∈ Lp(s, T ;U), y′ = Ay + Bv on ]s, T [
}

has solution. But the latter has a solution by virtue of (C′) and of Proposition 4.29.
Hence, the equation Φ(h) + A h � h∗

0 has at least one solution h. Equation (4.152)
can be used in certain situations to show that the operator ∂ϕ(s, )̇ is single-valued.
For instance, we have the following proposition.

Proposition 4.31 Let U = E, B = I and let the function L be of the form

L(x,u) = g(x) + ψ(u), ∀x ∈ E, u ∈ E. (4.157)

If either ψ∗ is strictly convex or g∗ and ϕ∗
0 are both strictly convex, then ∂ϕ(s, ·) is

single-valued on E.

Proof It suffices to show that, under the above conditions, the dual extremal arc ps

to problem (4.146) is unique. By Theorem 4.16, every such ps is the solution to the
dual control problem

inf

{∫ T

s

M(p,v)dt + ϕ∗
0

(−p(T )
) + (

p(0), h
)
, p′ + A∗p = v,

v ∈ Lp(s, T ;E∗)
}

, (4.158)

where

M(p,v) = g∗(v) + ψ∗(p).

If ψ∗ is strictly convex, then clearly the solution ps to (4.158) is unique. This also
happens if ϕ∗

0 and g∗ are strictly convex. �
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Remark 4.32 In particular, it follows by Proposition 4.31 that ϕ(s, ·) is Gâteaux
differentiable within E (see Proposition 2.40 and the comments which follow it).

Now, we return to the optimal control problem (4.142) and (4.143).
Let (x∗, u∗) ∈ C([0, T ];E) × Lp(0, T ;U) be an optimal pair. Then, by Theo-

rem 4.33, there is p∗ ∈ C([0, T ];E∗) and q ∈ Lp(0, T ;E∗) satisfying

x∗′ = Ax∗ + Bu∗ on [0, T ], (4.159)

p∗′ = −A∗p∗ + q on [0, T ], (4.160)

(q,B∗p∗) ∈ ∂L(x∗, u∗) a.e. on ]0, T [, (4.161)

p∗(T ) ∈ −∂ϕ0
(
x∗(T )

)
, u∗(t) ∈ ∂pH

(
x∗(t),B∗p∗(t)

)

a.e. t ∈ ]0, T [. (4.162)

We see that, for every s ∈ [0, T ], (x∗, u∗) is also an optimal pair for prob-
lem (4.146) with initial value h = x∗(s). Another way of saying this is that

ϕ
(
s, x∗(s)

) =
∫ T

s

L
(
x∗(t), u∗(t)

)
dt + ϕ0

(
x∗(T )

)
for s ∈ [0, T ], (4.163)

so that, by (4.152), we have

p∗(s) + ∂ϕ
(
s, x∗(s)

) � 0 for all s ∈ [0, T ].
This means that

Λ(t, x) = ∂pH
(
x,−B∗∂ϕ(t, x)

)

is an optimal synthesis function for problem (4.142), (4.143). In other words, any
optimal control u∗(t) is given by the feedback law

u∗(t) ∈ ∂pH
(
x∗(t),−B∗∂ϕ

(
t, x∗(t)

))
, t ∈ [0, T ], (4.164)

while the optimal state x∗ is the solution to the closed loop differential system

x ′ ∈ Ax + B∂pH
(
x,−B∗∂ϕ(t, x)

)
, 0 ≤ t ≤ T ,

x(0) = x0.
(4.165)

In a few words, the result just established amounts to saying that every optimal
control u is a feedback optimal control.

4.2.2 Hamilton–Jacobi Equations

In this section, we prove that, under certain circumstances, the optimal value func-
tion ϕ : [0, T ] × E → R is the solution to a certain nonlinear operator equation
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(see (4.167) below), which generalizes the well-known Hamilton–Jacobi equation
from the calculus of variations and classical mechanics.

This equation is known in the literature (see, for instance, Fleming and Rishel
[27], Berkovitz [18]) as the Bellman equation or the partial differential equation of
dynamic programming.

We assume hereafter that E and U are real Hilbert spaces, A is the infinites-
imal generator of an analytic semigroup of class C0, and that the assumptions of
Sect. 4.1.1 are satisfied where L(t) ≡ L, ϕ0 = 0, B(t) ≡ B , p = 2.

In addition, we assume that Condition (C′) is satisfied with p = 2 and that we
have the following.

For every k > 0, there exists Ck > 0 such that

sup
{|y|; y ∈ ∂xH(x, q)

} ≤ Ck

(
1 + ‖q‖) for q ∈ U, |x| ≤ k. (4.166)

The main result is the following theorem.

Theorem 4.33 Under the above assumptions, for every s ∈ [0, T ], the function h →
ϕ(s,h) is convex and lower-semicontinuous on E and, for every h ∈ D(A), the
function s → ϕ(s,h) is absolutely continuous on [0, T ] and satisfies the equation

ϕs(s, h) + (
Ah,∂ϕ(s,h)

) − H
(
h,−B∗∂ϕ(s,h)

) = 0

a.e. s ∈ ]0, T [, ∀h ∈ D(A), (4.167)

ϕ(T ,h) = 0 for all h ∈ E. (4.168)

Here, ϕs(s, h) stands for the partial derivative d
ds

ϕ(s, h) which exists a.e. on
]0, T [. Equation (4.167) must be understood in the following sense: for all h ∈
D(A), almost all s ∈ ]0, T [ and every section η(s,h) ⊂ ∂ϕ(s,h),

ϕs(s, h) + (
Ah,η(s,h)

) − H
(
h,−B∗η(s,h)

) = 0.

Here, ∂ϕ(s,h) denotes, as usual, the subdifferential of ϕ as a function of h.

Proof Fix h ∈ D(A) and s ∈ [0, T ]. By Proposition 4.29 and Theorem 4.5, there
exist functions xs,ps ∈ C([s, T ];E), qs ∈ L2(s, T ;E), us ∈ L2(s, T ;U) satisfying

x′
s = Axs + Bus a.e. t ∈ ]s, T [, (4.169)

p′
s = −A∗ps + qs a.e. t ∈ ]s, T [, (4.170)

xs(s) = h, ps(T ) = 0, (4.171)

(qs,B
∗ps) ∈ ∂L(xs, us) a.e. on ]s, T [, (4.172)

and

ϕ(s,h) =
∫ T

0
L(xs, us)dt.
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Equations (4.169), (4.170), and (4.172) can be equivalently expressed as

x ′
s = Axs + B∂pH(xs,B

∗ps) a.e. t ∈ ]s, T [, (4.173)

p′
s = −A∗ps − ∂xH(xs,B

∗ps) a.e. t ∈ ]s, T [. (4.174)

As noticed earlier (see Proposition 1.148), since A generates an analytic semigroup,
the functions xs and ps belong to W 1,2([s, T ];E) and are strong solutions to (4.169)
and (4.170) ((4.172) and (4.173), respectively).

By condition (4.144), we have

γ

∫ T

s

∥
∥us(t)

∥
∥2

dt + α ≤ β

∫ T

s

∣
∣xs(t)

∣
∣dt +

∫ T

s

L
(
xs(t), us(t)

)
dt

and this yields

γ

∫ T

s

∥
∥us(t)

∥
∥2

dt + α ≤ β

∫ T

s

∣
∣xs(t)

∣
∣dt +

∫ T

s

L
(
x0
s , u0

s

)
dt,

where x0
s (t) = y(t − s), u0

s (t) = u(t − s) and (y,u) is a feasible pair in prob-
lem (4.142).

It follows that

∫ T

s

∥
∥us(t)

∥
∥2 dt ≤ C

(∫ T

s

∣
∣xs(t)

∣
∣dt + 1

)

, s ∈ [0, T ], (4.175)

where C is independent of s.
Along with the variation of constant formula

xs(t) = eA(t−s)h +
∫ T

s

eA(t−τ)Bus(τ )dτ, s ≤ t ≤ T ,

the latter inequality implies via a standard calculation involving Gronwall’s Lemma

∫ T

s

∥
∥us(t)

∥
∥2 dt ≤ C, 0 ≤ s ≤ T . (4.176)

Then, again using Proposition 1.148, we get

∫ T

s

∣
∣x′

s(t)
∣
∣2 dt ≤ C, s ∈ [0, T ]. (4.177)

(In the following, we denote by C several positive constants independent of s.)
Now, condition (4.166) and (4.174) imply

∣
∣qs(t)

∣
∣ ≤ C

(
1 + ∣

∣ps(t)
∣
∣
)

a.e. t ∈ ]s, T [, (4.178)



304 4 Convex Control Problems in Banach Spaces

because, by virtue of (4.177), |xs(t)| are uniformly bounded on [s, T ]. Then, using
once again the variation of constant formula in (4.170), we get

∣
∣ps(t)

∣
∣ ≤ C

∫ T

s

∣
∣qs(τ )

∣
∣dτ, t ∈ [s, T ].

Substituting (4.168) in the latter, we obtain by Gronwall’s Lemma
∣
∣ps(t)

∣
∣ ≤ C, t ∈ [s, T ] (4.179)

and, therefore,
∣
∣qs(t)

∣
∣ ≤ C, t ∈ [s, T ]. (4.180)

By (4.170) and estimates (4.179) and (4.180), it follows that

∫ T

s

∣
∣p′

s(t)
∣
∣2

dt ≤ C, s ∈ [0, T ] (4.181)

(because A∗ generates an analytic semigroup).
Let ε > 0 be such that s + ε < T . We note that

ϕ(s + ε,h) ≤
∫ T

s+ε

L
(
xs(t − ε), us(t − ε)

)
dt,

whereupon

ϕ(s + ε,h) − ϕ(s,h) ≤ −
∫ T

T −ε

L
(
xs(t), us(t)

)
dt. (4.182)

On the other hand, a glance at relation (4.161) plus a little calculation reveals that

ϕ(s,h) − ϕ(s + ε,h) ≤
∫ s+ε

s

L
(
xs(t), us(t)

)
dt

+ (
ps(s + ε), xs(s) − xs(s + ε)

)
. (4.183)

We claim that the function t → H(xs(y),B∗ps(t)) is absolutely continuous on
[s, T ] and

d

dt

(
H

(
xs(t),B

∗ps(t)
) + (

Axs(t),ps(t)
)) = 0, a.e. on ]s, T [. (4.184)

Postponing for the moment the verification of these properties, we notice that (4.184)
implies that

H
(
xs(t),B

∗ps(t)
) + (

Axs(t),ps(t)
) = δ(s) for t ∈ [s, T ].

On the other hand, (4.172) yields

L
(
xs(t), us(t)

) = (
Bus(t),ps(t)

) − H
(
xs(t),B

∗ps(t)
)

a.e. on ]s, T [,
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so that

L
(
xs(t), us(t)

) = (
x′
s(t),ps(t)

) − δ(s) a.e. t ∈ ]s, T [.
Substituting the above equation in (4.182) and (4.183) gives

∣
∣ϕ(s + ε,h) − ϕ(s,h) − εδ(s)

∣
∣

≤ max

{∫ T

T −ε

∣
∣x′(t)

∣
∣
∣
∣ps(t)

∣
∣dt,

∫ s+ε

s

∣
∣x ′

s(t)
∣
∣
∣
∣ps(t) − ps(s + ε)

∣
∣dt

}

. (4.185)

On the other hand, we have

∣
∣ps(t)

∣
∣2 ≤ ε

∫ T

T −ε

∣
∣p′(τ )

∣
∣2

dτ for T − ε ≤ t ≤ T ,

while
∣
∣ps(t) − ps(ε + s)

∣
∣ ≤

∫ s+ε

s

∣
∣p′

s(τ )
∣
∣dτ for s ≤ t ≤ s + ε.

Estimates (4.177), (4.181), and (4.185) taken together show that
∣
∣ϕ(s + ε,h) − ϕ(s,h) − εδ(s)

∣
∣ ≤ C(ε)ε, (4.186)

where

lim
ε→0

C(ε) = 0.

Moreover, it is obvious that

δ(s) = H
(
xs(T ),0

)
.

Inasmuch as {|xs(T )|} is bounded in E, condition (4.166) implies, in particular,
that ∂sH(xs(T ),0) and, consequently, δ(s) are bounded on [0, T ]. Thus, inequal-
ity (4.186) shows that the function s → ϕ(s,h) is Lipschitz on [0, T ]. Moreover, it
follows from (4.186) that

d

ds
ϕ(s,h) = δ(s) = H

(
h,B∗ps(s)

) + (
Ah,ps(s)

)
.

Recalling that, by Proposition 4.30, ps(s) = −∂ϕ(s,h), we obtain the desired equal-
ity (4.167).

We complete the proof of Theorem 4.33 by verifying that the function H(xs(t),

B∗ps(t)) has the properties listed above (equation (4.184)). We have already no-
ticed that the condition −∞ < H(x,p) < +∞, for all (x,p) ∈ E × U , implies
that the subdifferential ∂H = {−∂xH, ∂pH } of H is locally bounded in E × U (see
Corollary 2.111). In particular, this implies that the function (x,p) → H(x,p) is
locally Lipschitz on E × U . In other words, for every (x0,p0) ∈ E × U there is a
neighborhood V0 of (x0,p0) and a positive constant M such that

∣
∣H(x,p) − H(y,q)

∣
∣ ≤ M

(|x − y| + ‖p − q‖)
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for all (x, y) and (y, q) in V0. Since the functions xs and ps are E-valued continuous
on [s, T ], the above inequality implies that
∣
∣H

(
xs(t),B

∗ps(t)
) − H

(
xs(t̃),B

∗ps

(
t̃
))∣∣ ≤ M1

(∣∣xs(t) − xs

(
t̃
)∣∣ + ∣

∣ps(t) − ps

(
t̃
)∣∣)

for all t and t̃ in [s, T ]. Recalling that xs and ps are in W 1,2([s, T ];E), we may infer
that the function t → H(xs(t),B

∗ps(t)) is absolutely continuous on [s, T ] and,
therefore, it is almost everywhere differentiable on ]s, T [ with d

dt
H(xs(t),B

∗ps(t))

in L2(s, T ). Next, we show that relation (4.184) holds almost everywhere on ]s, T [.
Let t and h > 0 be such that t, t +h ∈ [s, T ]. We observe from (4.173), (4.174), and
the definition of ∂H that

H
(
xs(t),B

∗ps(t)
) − H

(
xs(t),B

∗ps(t + h)
) ≤ 〈

us(t),B
∗(ps(t) − ps(t + h)

)〉

while

−H
(
xs(t + h),B∗ps(t + h)

) + H
(
xs(t),B

∗ps(t + h)
)

≤ (
qs(t + h), xs(t + h) − xs(t)

)
,

wherein qs(t) = p′
s(t) + A∗ps(t). Combining the two relations above gives

H
(
xs(t),B

∗ps(t)
) − H

(
xs(t + h),B∗ps(t + h)

)

− (
Bus(t + h) − qs(t), xs(t + h)

) − (
qs(t), xs(t + h) − xs(t)

)

≤ (
qs(t + h) − qs(t), xs(t + h) − xs(t)

)
.

Similarly,

H
(
xs(t + h),B∗ps(t + h)

) − H
(
xs(t),B

∗ps(t)
)

− (
Bus(t),ps(t + h) − ps(t)

) − (
qs(t), xs(t) − xs(t + h)

)

≤ (
B

(
us(t + h) − us(t)

)
,ps(t + h) − ps(t)

)
.

Integrating over [s, T − h] yields

1

h

∫ T −h

s

∣
∣H

(
xs(t),B

∗ps(t)
) − H

(
xs(t + h),B∗ps(t + h)

)

− (
Bus(t),ps(t) − ps(t + h)

) − (
qs(t), xs(t + h) − xs(t)

)∣∣dt

≤ 1

h

∫ T −h

s

(∣
∣B

(
us(t + h) − us(t)

)∣
∣
∣
∣ps(t + h) − ps(t)

∣
∣

+ ∣
∣qs(t + h) − qs(t)

∣
∣
∣
∣xs(t) − xs(t + h)

∣
∣)dt.

Since xs,ps are in W 1,2([s, T ];E) and Bus, qs in L2(s, T ;E), we can take the
limits for h → 0 and use the Lebesgue dominated convergence theorem to get

d

dt
H

(
xs(t),B

∗ps(t)
) − (

Bus(t),p
′
s(t)

) + (
qs(t), x

′
s(t)

) = 0 a.e. t ∈ ]s, T [,
as claimed. Theorem 4.33 has now been completely proved. �
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Now, we prove a variant of Theorem 4.33 under the following stronger assump-
tions on H and A.

(a) The Hamiltonian function H satisfies Condition (C′), where p = 2, and E, U

are real Hilbert spaces. The function p → H(x,p) is Fréchet differentiable and
the function (x,p) → ∂pH(x,p) is continuous and bounded on every bounded
subset of E × U .

(b) L : E → U → R is continuous, convex and locally Lipschitz in x, that is, for
every r > 0, there exists L such that

∣
∣L(x,u) − L(y,u)

∣
∣ ≤ Lr |x − y| for |x|, |y|,‖u‖ ≤ r.

(c) A : D(A) ⊂ E → E is the infinitesimal generator of a C0-semigroup on E and
ϕ0 : E → R is a convex, continuous function which is bounded on every bounded
subset.

Let ϕ : [0, T ] × E → R be the optimal value function (4.146).

Theorem 4.34 Under assumptions (a), (b), (c) and (4.166), the function ϕ satisfies
the following conditions.

(i) For every x ∈ D(A), s → ϕ(s, x) is Lipschitz on [0, T ].
(ii) For every s ∈ [0, T ], x → ϕ(s, x) is convex and Lipschitz on every bounded

sub set of E.
(iii) For all h ∈ D(A) and for almost all s ∈ ]0, T [, there exists η(s,h) ∈ ∂ϕ(s,h)

such that

ϕs(s, h) + (
Ah,η(s,h)

) − H
(
h,−B∗η(s,h)

) = 0 a.e. s ∈ ]0, T [, (4.187)

ϕ(T ,h) = ϕ0(h) for all h ∈ E. (4.188)

Proof We denote by x(t, s, h,u) the “mild” solution to the Cauchy problem

x′ = Ax + Bu, s ≤ t ≤ T ,

x(s) = h.
(4.189)

Let (s, h) ∈ [0, T ] × D(A) be arbitrary but fixed. Let (xs, us) ∈ C([s, T ];E) ×
L2(s, T ;U) be a solution to (4.189) such that

ϕ(s,h) =
∫ T

s

L(xs, us)dt + ϕ0
(
xs(T )

)
(4.190)

and let ps be a corresponding dual extremal arc. In other words, xs, us,ps sat-
isfy (4.169), (4.170), and (4.172) (equivalently (4.173) and (4.174)) along with the
transversality conditions

xs(s) = h, ps(T ) + ∂ϕ0
(
xs(T )

) � 0.
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Let 0 ≤ s ≤ s1 ≤ T and u0 ∈ U . By (b), L(x,u0) < +∞, for all x ∈ E. Consider
the function w : [s, T ] → U defined by

w(t) = u0 for s ≤ t ≤ s1, w(t) = us1(t), s1 ≤ t ≤ T .

We have

ϕ(s,h) − ϕ(s1, h) ≤
∫ s1

s

L
(
x(t, s, h,u0), u0

)
dt +

∫ T

s1

(
L

(
x(t, s, h,w),w(t)

)

− L
(
xs1(t), us1(t)

))
dt + ϕ0

(
x
(
T , s1, x(s1, s, h,w),w

))

− ϕ0
(
x(T , s1, h,w)

)
. (4.191)

On the other hand, we have

∣
∣x(t, s, h,u0) − h

∣
∣ ≤ ∣

∣eA(t−s)h − h
∣
∣ +

∫ t

s

∣
∣eA(t−τ)Bu0

∣
∣dτ ≤ C|t − s|(1 + |Ah|)

for s ≤ t ≤ s1,

and
∣
∣x(t, s1, h,w) − x(t, s1, h1,w)

∣
∣ ≤ C|h − h1| for s1 ≤ t ≤ T ,

respectively,

∣
∣x(t, s, h,w) − x(t, s1, h,w)

∣
∣ ≤ C

∣
∣x(s1, s, h,u0) − h

∣
∣ ≤ C|s1 − s|.

We notice that, by assumption (c), ϕ0 is locally Lipschitz on E (because ϕ0 and,
consequently, ∂ϕ0 are bounded on bounded subsets). Then, by (4.191), we see that
the function s → ϕ(s,h) is Lipschitz on [0, T ].

Next, for all s ∈ [0, T ], h, h̃ ∈ E, we have

∣
∣x(t, s, h,u) − x

(
t, s, h̃, u

)∣∣ ≤ C
∣
∣h − h̃

∣
∣ (4.192)

and

∣
∣x(t, s, h,u)

∣
∣ ≤ C

(

|h| +
∫ t

s

∥
∥u(τ)

∥
∥dτ

)

, s ≤ t ≤ T .

Then, by (4.175), we see that for |h| ≤ r , we may restrict problem (4.146) to those
u ∈ L2(s, T ;U) and x(t, s, h,u) which satisfy the inequality (C1 is independent
of s)

∫ T

s

∥
∥u(τ)

∥
∥2 dτ + ∣

∣x(t, s, h,u)
∣
∣ ≤ Cr for 0 ≤ t ≤ T .

Since the functions L and ϕ0 are locally Lipschitz, it follows, by (4.192), that

∣
∣ϕ(s,h) − ϕ

(
s, h̃

)∣
∣ ≤ Lr

∣
∣h − h̃

∣
∣ (4.193)
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for all s ∈ [0, T ] and |h|, |h̃| ≤ r , where Lr is independent of s.
It remains to prove that ϕ verifies (4.187). To this purpose, we fix h ∈ D(A),

s ∈ [0, T ] and notice that, for all s ≤ t ≤ T ,

ϕ
(
t, xs(t)

) =
∫ T

t

L
(
xs(τ ), us(τ )

)
d dτ + ϕ0

(
xs(T )

)
.

Recalling that us(t) = ∂pH(xs(t),B
∗ps(t)) for t ∈ [s, T ] and

L
(
xs(t), us(t)

) + H
(
xs(t),B

∗ps(t)
) = (

Bus(t),ps(t)
)
, (4.194)

we conclude by assumption (a) that the function t → L(xs(t), us(t)) is continuous
on [s, T ] and therefore

d

dt
ϕ
(
t, xs(t)

) + L
(
xs(t), us(t)

) = 0, s ≤ t ≤ T .

Let s ∈ [0, T ] be such that the function t → ϕ(t, h) is differentiable at t = s. We
have

d

dt
ϕ
(
t, xs(t)

)
∣
∣
∣
∣
t=s

= lim
t→s

(
ϕ
(
t, xs(s)

) − ϕ
(
s, xs(s)

))
(t − s)−1

+ lim
t→s

(
ϕ
(
t, xs(t)

) − ϕ
(
t, xs(s)

))
(t − s)−1. (4.195)

By the mean value property (see Proposition 2.66), there exist ζt on the line segment
between xs(t) and xs(s) and δt ∈ ∂ϕ(t, ζt ) such that

ϕ
(
t, xs(t)

) − ϕ
(
t, xs(s)

) = (
δt , xs(t) − xs(s)

)
.

Since, by (4.193), {δt } is bounded for t → s and limt→s ζt = xs(s) = h, we may
assume that

δt → η(s,h) weakly in E,

where η(s,h) ∈ ∂ϕ(s,h). On the other hand, since the function us is continuous on
[s, T ] and xs(s) = h ∈ D(A), it follows, from the variation of constant formula, that

xs(t) = eA(t−s)h +
∫ t

s

eA(t−τ)Bus(τ )dτ, s ≤ t ≤ T ,

and that

lim
t→s

(
xs(t) − xs(s)

)
(t − s)−1 = Ah + Bus(s).

Along with (4.195), the latter yields

ϕs(s, h) + (
η(s,h),Ah + Bus(s)

) + L
(
h,us(s)

) = 0
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and, by (4.194),

ϕs(s, h) + (
η(s,h),Ah

) − H
(
h,−B∗η(s,h)

) = 0,

because, by virtue of Proposition 4.30, we may take ps(s) = −η(s,h) ∈ ∂ϕ(s,h).
The proof of Theorem 4.34 is, therefore, complete. �

As regards the uniqueness in (4.142), we have the following theorem.

Theorem 4.35 Under the assumptions of Theorem 4.33, let ϕ : [0, T ] × E → R be
a solution to problem (4.167)–(4.168) having the following properties.

(j) For every s ∈ [0, T ], ϕ(s, ·) is convex and continuous on E; for every x ∈
W 1,2([0, T ];E), the function t → ϕ(t, x(t)) is absolutely continuous and the
following formula holds:

d

dt
ϕ
(
t, x(t)

) = ϕt

(
t, x(t)

) + (
η
(
t, x(t)

)
, x′(t)

)
a.e. t ∈ ]0, T [, (4.196)

where η(t, x) ∈ ∂ϕ(t, x).
(jj) For each x0 ∈ D(A) and s ∈ [0, T ], the Cauchy problem

x ′ ∈ Ax + B∂pH
(
x,−B∗∂ϕ(t, x)

)
, s ≤ t ≤ T ,

x(s) = x0,
(4.197)

has at least one solution xs ∈ W 1,2([s, T ];E) ∩ L∞(s, T ;D(A)).

Then ϕ is the optimal value function of problem (4.142) and

Λ(t, x) = ∂xH
(
x,−B∗∂ϕ(t, x)

)

is an optimal feedback control.

Proof Let y ∈ W 1,2([s, T ];E) and v ∈ L2(s, T ;U) be such that y(s) = h ∈ D(A)

and

y′ = Ay + Bv a.e. t ∈ ]s, T [.
By formula (4.196) and (4.167), it follows that

d

dt
ϕ
(
t, y(t)

) = H
(
y(t),−B∗η

(
t, y(t)

)) + (
Bv(t), η

(
t, y(t)

)) ≥ L
(
y(t), v(t)

)

a.e. t ∈ ]s, T [,
and, integrating over [s, T ], this yields

ϕ(s,h) ≤
∫ T

s

L(y, v)dt. (4.198)
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Hence,

ϕ(s,h) ≤ ϕ̃(s, h) for all h ∈ D(A), (4.199)

where ϕ̃ is the value function of problem (4.142). Since D(A) is dense in E and ϕ, ϕ̃

are continuous, inequality (4.199) extends to all of E. Now, let x̃s be the solution to
the Cauchy problem

x′ = Ax + BΛ(t, x), s ≤ t ≤ T ,

x(s) = h,

and let ũs = Λ(t, x̃s) be the corresponding control. We have

d

dt
ϕ
(
t, x̃(t)

) = ϕt

(
t, x̃s(t)

) + (
∂ϕ

(
t, x̃s (t)

)
, x̃′

s(t)
)

= ϕt

(
t, x̃s(t)

) + (
Ax̃s(t), ∂ϕ

(
t, x̃s(t)

)) + (
∂ϕ

(
t, x̃s(t)

)
,Bũ − s(t)

)

a.e. t ∈ ]s, T [
and, therefore, by (4.167)

d

dt
ϕ
(
t, x̃s(t)

) = H
(
x̃s(t),−B∗∂ϕ

(
t, x̃s(t)

)) + (
B∂ϕ

(
t, x̃s(t)

)
, ũs(t)

)

= −L
(
x̃s(t), ũs(t)

)
a.e. t ∈ ]s, T [,

since, by (4.164), ũs(t) ∈ ∂pH(x̃s(t),−B∗∂ϕ(t, x̃s (t))). Integrating the latter over
[s, T ], we get

ϕ(s,h) =
∫ T

s

L(x̃s, ũs)dt

and, therefore,

ϕ(s,h) = ϕ̃(s, h) for all s ∈ [0, T ], h ∈ E.

Thus, ϕ is the optimal value function of problem (4.142) and ũs is an optimal control
on [s, T ]. �

Remark 4.36 In general, the optimal value function ϕ, defined by (4.146), is called
the variational solution to the Hamilton–Jacobi equation (4.187) and (4.188), and
Theorem 4.35 amounts to saying that, under the additional assumption (4.166), this
is a strong solution.

Let us now take a brief look at some particular cases.
If E = R

n and A ≡ 0, (4.187) reduces to the classical Hamilton–Jacobi equation

∂

∂t
ϕ(t, x) − H

(

x,−∂ϕ

∂x
(t, x)

)

= 0, t ∈ [0, T ], x ∈ R
n,

ϕ(T , x) = ϕ0(x) for x ∈ R
n.

(4.200)
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It is instructive to notice that the differential systems of characteristics is just the ex-
tremality systems in the Hamiltonian form associated to the corresponding problem
of the calculus of variations. We refer the reader to the book [33] of P.L. Lions for
other existence results on (4.200) and its implications in control theory.

As another example, consider the case of the control problem with quadratic cost
criterion, that is,

L(x,u) = 1

2

(|Cx|2 + 〈Nu,u〉), ϕ0(x) = 1

2
(P0x, x), x ∈ E, u ∈ U,

where C ∈ L(E,E), P0 ∈ L(E,E) is symmetric and positive, and N is a self-
adjoint positive definite isomorphism on U . It is readily seen that

H(x,p) = 1

2

(〈
N−1p,p

〉 − |Cx|2), for all x ∈ E and p ∈ U.

Thus, the corresponding Hamilton–Jacobi equation is

d

dt
ϕ(t, h) − 1

2

〈
N−1B∗∂ϕ(t, h),B∗∂ϕ(t, h)

〉 + (
Ah,∂ϕ(t)

) + 1

2
|Ch|2 = 0

a.e. on ]0, T [, (4.201)

ϕ(T ,h) = 1

2
(P0h,h), for every h ∈ D(A).

It is easily seen that D(ϕ(t, ·)) = E. Furthermore, (4.173) and (4.174) show that
the operator h → pt(t) = ∂ϕ(t, h) is linear and, therefore, self-adjoint on E (see
Proposition 2.51). Moreover, we have

ϕ(t, h) = 1

2

(
P(t)h,h

)
for all h ∈ E, P (t) = ∂ϕ(t).

In terms of P(t), (4.201) may be rewritten as

d

dt

(
P(t)h,h

) − 〈
N−1B∗P(t)h,B∗P(t)h

〉 + 2
(
Ah,P (t)h

) + |Ch|2 = 0

a.e. on ]0, T [ and for all h ∈ D(A). (4.202)

Thus, differentiating formally (4.202) (in the Fréchet sense), we obtain for P an
operator differential equation of the following type (the Kalman–Riccati equation):

d

dt
P (t) + A∗P(t) + P(t)A − P(t)BN−1B∗P(t) + CC∗ = 0,

P (T ) = P0,

(4.203)

whereas the optimal feedback control u(t) is expressed by (see formula (4.164))

u(t) = −N−1B∗P(t)x(t), 0 ≤ t ≤ T .

In this context, (4.203) is equivalent to the synthesis of optimal controller for the
given problem.
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Remark 4.37 Equation (4.167) can be studied in a more general context than that
treated here, namely, that of viscosity solutions (see Crandall and Lions [21–24]).
The concept of viscosity solutions for (4.167) is a very general one and within this
framework existence and uniqueness follow for quite general Hamiltonian func-
tions H . However, one must assume some growth conditions on H which are hard
to verify for Hamilton–Jacobi equations of the form (4.167), arising in the synthesis
of optimal control problems.

4.2.3 The Dual Hamilton–Jacobi Equation

The duality theorem for the optimal control problem (P) can be used to express the
solution ϕ to the Hamilton–Jacobi equation (4.187) and (4.188) in function of a
“dual” Hamilton–Jacobi equation associated with the dual problem (P∗). Namely,
the optimal value function ϕ given by (4.146) is, in virtue of Theorem 4.16, equiva-
lently expressed as

ϕ(t, x) = − inf
q

{

ϕ∗
0 (−q) + inf

{∫ T

t

M
(
B∗p(s),w(s)

)
ds + (

p(t), x
);

w ∈ L1(t, T ;E), p′ = −A∗p + w a.e. s ∈ (t, T ), p(T ) = q

}}

= − inf
{
ϕ∗

0 (−q) + χ(t, q); q ∈ E
}
,

where M is given as in Sect. 4.1.8 and

χ(t, q) = inf

{∫ T

t

M
(
B∗p(s),w(s)

)
ds + (

p(t), x
); w ∈ L1(t, T ;E);

p′ = −A∗p + w a.e. in (t, T ); p(T ) = q

}

= inf

{∫ T −t

0
M

(
B∗p(s),w(s)

)
ds + (

p(T − t), x
); p′ = A∗p + w

a.e. in (0, T − t), w ∈ L1(0, T − t;E), p(0) = q

}

= inf

{∫ T

t

M
(
B∗z(s), v(s)

)
ds + (

z(T ), x
); z′ = A∗z − v

a.e. s ∈ (t, T ); z(t) = q, v ∈ L1(t, T ;E)

}

.
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In other words, χ : [0, T ] → E → R is the variational solution to the Hamilton–
Jacobi equation

χt (t, q) − H̃
(
q,χq(t, q)

) + (
A∗q,χq(t, q)

) = 0,

χ(T , q) = (q, x),
(4.204)

where H̃ is the Hamiltonian function

H̃ (q, v) = sup
{
(v,w) − M(B∗q,w); w ∈ E

}
, ∀(q, v) ∈ E × E.

We call (4.204) the dual Hamilton–Jacobi equation corresponding to (4.167).
We have proved, therefore, the following representation formula for the varia-

tional solutions to the Hamilton–Jacobi equation (4.187) and (4.188) (see Barbu
and Da Prato [15]).

Theorem 4.38 Under the above assumptions, the variational solution ϕ to the
Hamilton–Jacobi equation (4.187) and (4.188) is given by

ϕ(t, x) = − inf
{
ϕ∗

0 (−q) + χ(t, q); q ∈ E
}
, ∀(t, x) ∈ [0, T ] × E, (4.205)

where χ is the variational solution to (4.204).

Now, we consider some particular cases. Let

L(x,u) = h(u), ∀(x,u) ∈ E × E,

where h is a continuous convex function such that

h∗(z) = sup
{〈z,u〉 − h(u); u ∈ U

}
< ∞, ∀z ∈ U.

Then

M(z,w) =
{

h∗(z), if w = 0,

+∞, otherwise,
∀(z,w) ∈ U × E.

In this case, the Hamilton–Jacobi equation (4.187) and (4.188) has the following
form:

ϕt (t, x) + (
Ax,ϕx(t, x)

) − h∗(−B∗ϕx(t, x)
) = 0,

ϕ(T , x) = ϕ0(x),

while the corresponding dual equation (4.204) is

χt (t, q) + (
A∗q,χq(t, q)

) + h∗(B∗q) = 0,

χ(T , q) = (x, q).
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This is a linear first-order partial differential equation which has the solution given
by

χ(t, q) = (
eA∗(T −t)q, x

) +
∫ T −t

0
h∗(B∗eA∗sq

)
ds, ∀(t, q) ∈ [0, T ] × E,

and therefore by (4.205), we have

ϕ(t, x) = − inf
q

{

ϕ∗
0 (−q) + (

eA∗(T −t)q, x
) +

∫ T −t

0
h∗(B∗eA∗sq

)
ds

}

.

In the special case A = 0, this yields

ϕ(t, x) = − inf
{
ϕ∗

0 (−q) + (q, x) + (T − t)h∗(B∗q)
}

= sup
{
(p, x) − ϕ∗

0 (p) − (t − T )h∗(−B∗p); p ∈ E
}
.

Using the Fenchel duality theorem (see Theorem 3.54), we may equivalently write
ϕ as

ϕ(t, x) = inf

{

ϕ0(p) + (T − t)H ∗
(

x − p

T − t

)

; p ∈ E

}

, (4.206)

where H(p) = h∗(−B∗p) and H ∗ is the conjugate of H .
With this notation, the function ϕ is the variational solution to the Hamilton–

Jacobi equation

ϕt − H(ϕx) = 0 in (0, T ) × E,

ϕ(T , x) = ϕ0(x).

Formula (4.206) is known in literature as the Lax–Hopf formula.
Assume now that L(x,u) = 1

2 |Cx|2 + 〈Nu,u〉 and ϕ0(x) = 1
2(P0x, x). Then,

as seen earlier, the Hamilton–Jacobi equation (4.187) reduces to the Riccati equa-
tion (4.203) (equivalently, (4.202)) and so, by (4.205), we have (see Barbu and Da
Prato [16])

1

2

(
P(t)x, x

) = − inf
q∈E

{
1

2

(
P −1

0 q, q
) + ψ(t, q)

}

= − inf
q∈E

{
1

2

(
P −1

0 q, q
) + 1

2

(
Q(t)q, q

) + (
r(t), q

) + s(t)

}

,

where Q is the solution to the equation

Q′ + AQ + QA∗ − QC∗CQ + BB∗ = 0, Q(T ) = 0,

and

r ′(τ ) + (
A − Q(τ)C∗C

)
r(τ ) = 0, τ ∈ (t, T ), r(T ) = x,
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s(t) = −1

2

∫ T

t

∣
∣CU(T ,T + t − σ)x

∣
∣2 dσ,

where U(t, s) is the evolution operator generated by A − Q(·)C∗C (see Defini-
tion 1.147).

4.3 Boundary Optimal Control Problems

We present here a general formulation for the so-called “boundary optimal control
problem” in Hilbert spaces. There are some notable differences between this formu-
lation and that given in Sect. 4.1, and the main one is that the operator B arising in
system (4.1) is, in this case, unbounded from U to E. This more general formulation
allows us to include boundary controllers u into specific problems involving partial
differential equations.

4.3.1 Abstract Boundary Control Systems

Let E and U be a pair of real Hilbert spaces with the norms denoted | · | and ‖ · ‖,
respectively. Let A be a linear, closed and densely defined operator in E with domain
D(A) ⊂ E and U a linear continuous operator from U to E. Denote by (·, ·) and
〈·, ·〉 the scalar product of H and U , respectively.

We assume that:

(i) A generates a C0-semigroup S(t) = eAt on E

(ii) D ∈ L(U,E).

An abstract boundary control system is of the form

dy

dt
(t) = A

(
y(t) − Du(t)

) − λDu(t) + f (t), t ∈ (0, T )

y(0) = y0,

(4.207)

or, equivalently,

dy

dt
(t) = Az(t) − λDu(t) + f (t), t ∈ (0, T ),

z(t) = y(t) − Du(t), t ∈ (0, T ),

y(0) = y0,

(4.208)

where y0 ∈ E, u ∈ L2(0, T ;U), f ∈ L2(0, T ;E), λ ∈ ρ(A) (the resolvent of A).
Formally, the solution y to (4.208) is given by

y(t) = eAty0 −
∫ t

0
AeA(t−s)Du(s)ds +

∫ t

0
eA(t−s)

(−λDu(s)+ f (s)
)

ds. (4.209)
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However, since in general ADu is not in L2(0, T ;E), Formula (4.209) must be
taken in the generalized sense to be defined below.

We denote by (D(A∗))′ the completion of the space E in the norm

|||x||| = ∥
∥(λI − A∗)−1x

∥
∥, ∀x ∈ H.

We have of course E ⊂ (D(A∗))′ in the algebraic and topological sense. Then we
consider the extension Ã of A defined from E to (D(A∗))′

Ãy(ψ) = (y,A∗ψ), ∀ψ ∈ D(A∗). (4.210)

Then we mean by “mild” solution to (4.207) a (D(A∗))′-valued continuous function
y : [0, T ] → (D(A∗))′ such that

(
y(t),ψ

) = (
eAty0,ψ

) −
∫ t

0

(
eA(t−s)Du(s),A∗ψ

)
ds

+
∫ t

0

(
eA(t−s)

(−λDu(s) + f (s)
)
,ψ

)
ds,

∀ψ ∈ D(A∗), ∀t ∈ [0, T ]. (4.211)

Equivalently,

dy

dt
= Ãy + (

Ã − λI
)
Du + f, t ∈ (0, T ),

y(0) = y0.

(4.212)

In this way, the boundary control system (4.207) can be written in the form (4.212),
that is,

dy

dt
= Ãy + Bu + f, t ∈ (0, T ),

y(0) = y0,

(4.213)

where B = (Ã − λI)D ∈ L(U, (D(A∗))′). Therefore, we may view an abstract
boundary control as a control system of the form (4.1), but with an unbounded op-
erator B .

We present below a few specific examples.

1° Dirichlet Boundary Control Consider the control system

∂y

∂t
(t, x) − Δy(t, x) = f (t, x), (t, x) ∈ (0, T ) × Ω = QT ,

y(0, x) = y0(x), x ∈ Ω,

y(t, x) = u(t, x), (t, x) ∈ ΣT = (0, T ) × ∂Ω.

(4.214)

Here, Ω is a bounded and open subset of R
N with smooth boundary ∂Ω . In

system (4.214), the control input u is taken in L2(ΣT ) = L2(0, T ;L2(∂Ω)),
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f ∈ L2(QT ) = L2(0, T ;L2(Ω)) and y0 ∈ L2(Ω). In order to write (4.214) in
the form (4.207), we set E = L2(Ω), U = L2(∂Ω), λ = 0, A = Δ, D(A) =
H 1

0 (Ω) ∩ H 2(Ω) and D ∈ L(U,E) is the Dirichlet map associated with (4.214),
defined by

Du = z, (4.215)

where z ∈ L2(Ω) is the solution to the nonhomogeneous Dirichlet problem

Δz = 0 in Ω; z = u on ∂Ω. (4.216)

The solution z to (4.216) is defined by

∫

Ω

zΔϕ dx =
∫

∂Ω

u
∂ϕ

∂ν
dx, ∀ϕ ∈ H 1

0 (Ω) ∩ H 2(Ω), (4.217)

and it is well known (see Lasiecka and Triggiani [31, 32]) that D ∈ L(L2(∂Ω),

H
1
2 (Ω)). Then B = ÃD ∈ L(L2(∂Ω), (D(A∗))′) and therefore system (4.214) can

be written as (4.212) (equivalently, (4.207)).
We note for later use that the adjoint B∗ ∈ L(D(A),L2(∂Ω)) of the operator B

is given by

B∗y = ∂y

∂ν
, ∀y ∈ D(A) = H 1

0 (Ω) ∩ H 2(Ω), (4.218)

where ∂
∂ν

is, as usual, the normal derivative.

2° Neumann Boundary Control Consider system (4.214) with Neumann bound-
ary control, that is,

∂y

∂t
− Δy = f in QT ,

y(0, x) = y0(x) in Ω,

∂y

∂ν
= u on ΣT ,

(4.219)

where u ∈ L2(ΣT ).
In this case, U = L2(∂Ω), E = L2(Ω), A = Δ, D(A) = {y ∈ H 2(Ω); ∂y

∂ν
= 0

on ∂Ω} and λ is any negative number. Then Du = z is the solution to the Neumann
boundary problem

Δy − λy = 0 in Ω; ∂y

∂ν
= u on ∂Ω

and, as is easily seen, we have D ∈ L(L2(∂Ω),H 1(Ω)) and

B∗y = y|∂Ω, ∀y ∈ D(A∗) = D(A).
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A simpler and more convenient way to represent (4.219) as an abstract boundary
control system is to write it as

dy

dt
= A0y + Bu + f a.e. t ∈ (0, T ),

y(0) = y0,

(4.220)

where the operator A0 ∈ L(V,V ′), V = H 1(Ω), V ′ = (H 1(Ω))′ is defined by

(A0y,ψ) =
∫

Ω

∇y · ∇ψ dx, ∀ψ ∈ V,

and B ∈ L(L2(Ω),V ′) is given by (By,ψ) = ∫
∂Ω

uψ dx, ∀ψ ∈ V , y ∈ V .

3° The Oseen–Stokes Boundary Control System Consider the linear system

∂y

∂t
− ν0Δy + (a · ∇)y + (y · ∇)b = ∇p + f in (0, T ) × Ω = QT ,

∇ · y = 0 on QT ,

y(0, x) = 0 in Ω,

y(t, x) = u(t, x) on ΣT .

(4.221)

Here, y = {y1, . . . , yn}, ∇ · y = divy, a, b ∈ (H 2(Ω))n, ν0 > 0 and Ω ⊂ R
n is a

bounded and open domain with smooth boundary ∂Ω . System (4.221) describes the
dynamics of an incompressible fluid improving the classical Stokes model. In the
special case a = ye, b = ye, this system arises by the linearization of the classical
Navier–Stokes equation

∂y

∂t
− ν0Δy + (y · ∇)y = ∇p + f in QT ,

∇ · y = 0 on QT ,

y(0, x) = 0 in Ω,

y = u on QT ,

(4.222)

around the stationary solution ye ∈ (H 2(Ω)) ∩ (H 1
0 (Ω))n, ∇ · ye = 0.

We set E = {y ∈ (L2(Ω))n;∇ · y = 0, y · ν = 0 on ∂Ω} (the space of free diver-
gence vectors on Ω) and denote by A the operator

Ay = P
(
ν0Δy − (ye · ∇)y − (y · ∇)ye

)
(4.223)

with the domain D(A) = {y ∈ E;y ∈ (H 1
0 (Ω))n ∩ (H 2(Ω))n). Here, P is the Leray

projection of E on (L2(Ω))n (see, e.g., [13], p. 251) and ν is, as usual, the normal
to ∂Ω .
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Consider the operator D : U → E defined by

−ν0ΔDu + (a · ∇)Du + (Du · ∇)b + λDu = ∇p in Ω,

∇ · Du = 0, Du = u on ∂Ω,

where U = {u ∈ (L2(∂Ω))n, u ·ν = 0 on ∂Ω} and λ > 0 is sufficiently large. Then
we have D ∈ L(U,E).

System (4.221) can be written as (4.212), where Ã : E → (D(A∗))′ is given
by (4.210), that is,

(
Ãy,ψ

) =
∫

Ω

yA∗ψ dx

= −
∫

Ω

yj

(
ν0Δψj − Di

(
(ye)iψj

) + Dj

(
(ye)iψi

))
dx,

∀ψ ∈ D(A∗) = D(A), (4.224)

and

B = (
Ã − λI

)
D : L2(∂Ω) → E.

We have

B∗y = ν0
∂y

∂ν
, ∀y ∈ D(A). (4.225)

Now, coming back to the “mild” solution y to system (4.207), by (4.211) we
see that, for u ∈ Lp(0, T ;U), y : [0, T ] → (D(A∗))′ is in Lp(0, T ; (D(A∗))′ ∩
Cw([0, T ]; (D(A∗))′), that is, y is weakly (D(A∗))′-valued continuous. However,
under additional assumptions on A, the “mild” solution is in Lp(0, T ;E). This hap-
pens, for instance, if besides (i) and (ii) the operator A satisfies also the following
assumption.

(iii) A is infinitesimal generator of a C0-analytic semigroup eAt and there is γ ∈
L1(0, T ) such that

∥
∥B∗eA∗t∥∥

L(U,E)
≤ γ (t), ∀t ∈ (0, T ), (4.226)

where B = (Ã − λI) ∈ L(U, (D(A∗))′).
Then we have the following proposition.

Proposition 4.39 Under assumptions (i)–(iii), the mild solution y to (4.207) is in
Lp([0, T ];E) if u ∈ Lp(0, T ;U). Moreover, if γ ∈ Lp′

(0, T ), 1
p

+ 1
p′ = 1, then

y ∈ C([0, T ];E).

Proof Consider the function

(LT u)(t) =
∫ t

0
eA(t−s)

(
Ã − λ

)
Du(s)ds, t ∈ [0, T ]
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which, for each u ∈ Lp(0, T ;U) is well defined from [0, T ] to (D(A∗))′ and be-
longs to C([0, T ]; (D(A∗))′). Moreover, we have

(
LT u(t),ψ

) =
∫ t

0

(
u(s),B∗eA∗(t−s)ψ

)
ds, ∀ψ ∈ Lp′

(0, T ;E).

By (4.226) and the Young inequality, the latter yields
∣
∣(LT u(t),ψ

)∣∣
L1(0,T )

≤ CT ‖u‖Lp(0,T ;U)‖ψ‖
Lp′

(0,T ;E)

and, therefore,

‖LT u‖Lp(0,T ;E) ≤ CT ‖u‖Lp(0,T ;U).

Hence, LT u ∈ Lp(0, T ;E), as claimed. �

Assume now that γ ∈ Lp′
(0, T ). We have, as above, LT u ∈ L∞(0, T ;E) and

∣
∣LT u(t + ε) − LT u(t)

∣
∣

≤
∣
∣
∣
∣

∫ t+ε

t

eA(t+ε−s)Bu(s)ds

∣
∣
∣
∣ +

∣
∣
∣
∣
(
eAε − I

)
∫ t

0
eA(t−s)Bu(s)ds

∣
∣
∣
∣

≤ C

∫ t+ε

t

∥
∥u(s)

∥
∥

U
γ (t+ε−s)ds +

∣
∣
∣
∣
(
eAε−I

)
∫ t

0
eA(t−s)Bu(s)

∣
∣
∣
∣ds

≤ C

(∫ t+ε

t

∥
∥u(s)

∥
∥p

U
ds

) 1
p
(∫ t+ε

t

(
γ (t + ε − s)

)p′
ds

) 1
p′

+
∣
∣
∣
∣
(
eAε − I

)
∫ t

0
eA(t−s)Bu(s)ds

∣
∣
∣
∣ → 0,

as ε → 0, because γ ∈ Lp′
(0, T ), u ∈ Lp(0, T ;U) and LT u ∈ L∞(0, T ;E). Hence,

LT u ∈ C([0, T ];E). Taking into account that, by assumption (4.226), we have
∥
∥eAtB

∥
∥

L(U,E)
≤ γ (t), ∀t ∈ (0, T ],

it follows by Proposition 4.39 that the “mild” solution y ∈ Lp(0, T ;E) to (4.207)
can be equivalently expressed as

y(t) = eAty0 +
∫ t

0
eA(t−s)Bu(s)ds, a.e. t ∈ (0, T ). (4.227)

Let us check the key assumption (iii) in the examples considered above.
In the case of Dirichlet, for the boundary control system (4.214), by (4.218), we

see that (4.226) reduces to
∥
∥
∥
∥
∂y

∂ν
(t)

∥
∥
∥
∥

L2(∂Ω)

≤ γ (t)‖y0‖L2(Ω), ∀y0 ∈ L2(Ω), (4.228)
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where y(t) = eAty0 is the solution to the linear equation

∂y

∂t
− Δy = 0 in (0, T ) × Ω = QT ,

y = 0 on (0, T ) × ∂Ω = ΣT ,

y(0, x) = y0(x), x ∈ Ω.

Let us check that (4.228) holds with γ (t) = Ct− 3
4 . Indeed, by Green’s formula, we

have for all ϕ ∈ H 2(Ω),
∫

∂Ω

∂

∂ν
y(x, t)ϕ(x)dx =

∫

Ω

∂

∂t
y(x, t)ϕ(x)ds =

∫

Ω

Ay(x, t)ϕ(x)dx. (4.229)

Let us denote by Aα , 0 < α < 1, the fractional power of the operator A. Aα is
defined by (see, e.g., Yosida [48], p. 260)

(−A)αx = − sinαπ

π

∫ ∞

0
λα−1(λI − A)−1Ax dλ, ∀x ∈ D(A).

Then H
1
2 (Ω) ⊂ D(Aα) for 0 < α < 1

4 (see Lions–Magenes [34], Lasiecka and Trig-
giani [31]) and by (4.229) we see that

∣
∣
∣
∣

∫

∂Ω

∂y

∂ν
(x, t)ϕ(x)dx

∣
∣
∣
∣ ≤

∫

Ω

∣
∣A1−αy(x, t)

∣
∣ · ∣∣Aαϕ(x)

∣
∣dx

≤ C
∥
∥A1−αy(t)

∥
∥

L2(Ω)
‖ϕ‖

H
1
2 (Ω)

, ∀ϕ ∈ H 2(Ω).

On the other hand, we have the interpolation inequality

∣
∣A1−αy

∣
∣ ≤ C|Ay|1−α |y|α, ∀y ∈ D(A).

Since y(t) = eAty0 is an analytic semigroup, we have

∣
∣Ay(t)

∣
∣ ≤ C

t
, ∀t > 0,

and, therefore,

∥
∥A1−αy(t)

∥
∥

L2(Ω)
≤ Ctα−1‖y0‖L2(Ω), ∀y0 ∈ L2(Ω).

In virtue of the trace theorem, this yields

∣
∣
∣
∣

∫

∂Ω

∂y

∂ν
(x, t)u(x)dx

∣
∣
∣
∣ ≤ Ct−

3
4 ‖y0‖L2(Ω)‖u‖L2(∂Ω), ∀u ∈ L2(∂Ω),

which implies the desired inequality (4.228) with γ (t) = Ct− 3
4 .



4.3 Boundary Optimal Control Problems 323

In particular, it follows by Proposition 4.39 that, for each u ∈ Lp(0, T ;L2(∂Ω)),
the solution y to (4.228) is in Lp(0, T ;L2(Ω)) and, if u ∈ L4(0, T ;L2(∂Ω)), then
y ∈ C([0, T ];L2(Ω)).

Consider now the Neumann boundary control system (4.219). Then Assump-
tion (4.226) is reduced to

(∫

∂Ω

∣
∣y(t, x)

∣
∣2 dx

) 1
2 ≤ γ (t)‖y0‖L2(Ω), ∀t ∈ [0, T ],

where y(t) = eAty0 is the solution to

∂y

∂t
− Δy = 0 in (0, T ) × Ω,

y(0) = u0 in Ω,

∂y

∂ν
= 0 on (0, T ) × ∂Ω.

Since, as is easily seen,

∫ T

0

∥
∥y(t)

∥
∥2

H 1(Ω)
≤

∫ T

0

∫

Ω

|∇y|2 ds dx ≤ 1

2
‖y0‖2

L2(Ω)
,

we get by the trace theorem that

(∫ T

0

∫

∂Ω

∣
∣y(s, x)

∣
∣2 dx

) 1
2 ≤

√
1

2
‖y0‖L2(Ω)

and, therefore, (4.226) holds with γ ∈ L2(0, T ). This implies that the solution y to
system (4.219) is in C([0, T ];L2(Ω)) for u ∈ L2(0, T ;L2(∂Ω)).

Consider now the Oseen–Stokes equation (4.221). By (4.225), we have, as above,
that

∥
∥B∗eA∗t y0

∥
∥

(L2(∂Ω))n
= ν0

∥
∥
∥
∥

∂

∂ν
eA∗t y0

∥
∥
∥
∥

(L2(∂Ω))n
,

while, by the trace theorem,

∥
∥
∥
∥

∂

∂ν
eA∗t y0

∥
∥
∥
∥

(L2(∂Ω))n
≤ C

∥
∥eA∗t y0

∥
∥

(H
3
2 (Ω))n

= C
∣
∣(A∗)

3
4 eA∗t y0

∣
∣

≤ Ct−
3
4 ‖y0‖(L2(Ω))n .

Hence, condition (4.226) holds with γ (t) = Ct− 3
4 and we have the same conclusion

as in the case of the parabolic system (4.214).
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Remark 4.40 The abstract formulation (4.212) includes besides linear parabolic
boundary control systems of the type presented above also linear systems with sin-
gular distributed controllers. For instance, the parabolic control system

∂y

∂t
− Δy = uμ in (0, T ) × Ω,

y = 0 on (0, T ) × ∂Ω, y(0) = y0 in Ω,

where u ∈ L2(0, T ) and μ ∈ (H 1
0 (Ω)∩H 2(Ω))′ can be represented as (4.12), where

A = −Δ, D(A) = H 1
0 (Ω), U = R. In particular, if 1 ≤ n ≤ 3, one might take μ =

δ(x0) (the Dirac distribution concentrated in x0 ∈ Ω). The latter is the case of a
pointwise controlled system.

4.3.2 The Boundary Optimal Control Problem

We study here the following unconstrained optimal control problem.

Minimize
∫ T

0
L

(
t, y(t), u(t)

)
dt + �

(
y(0), y(T )

)

over all y ∈ C
([0, T ];E)

and u ∈ Lp(0, T ;U)

subject to state equation (4.207) (equivalently, (4.227)).

(4.230)

Here, p ∈ [2,∞[ and L : (0, T ) × E × U → R, � : E × E → R are convex
and lower-semicontinuous functions to be made precise below. We assume that
(iii) holds with γ ∈ Lp′

(0, T ), where 1
p′ = 1 − 1

p
and so, by Proposition 4.39,

y ∈ C([0, T ];E). This gives a meaning to �(y(0), y(T )).
An end-point pair (y1, y2) ∈ E × E is called attainable for problem (4.230) if

there exists y ∈ C([0, T ];E) and u ∈ Lp(0, T ;U) satisfying equation (4.207) (in
the “mild” sense (4.227)) and such that L(t, y,u) ∈ L1(0, T ), y(0) = y1, y(T ) = y2.
The set of all attainable pairs will be denoted by KL.

We are now ready to formulate the main result of this section.

Theorem 4.41 Assume that the functions L(t) and � satisfy Hypotheses (C) and (E)
in Sect. 4.1, where KL was defined above. Then a given pair (y∗, u∗) is optimal
in problem (4.230) if and only if there exist functions p∗ ∈ C([0, T ];E) and q ∈
L1(0, T ;E) satisfying along with y∗ and u∗ the system

p∗′ = −A∗p∗ + q, t ∈ [0, T ], (4.231)
(
q(t),B∗p∗(t)

) ∈ ∂L
(
t, y∗(t), u∗(t)

)
a.e. t ∈ ]0, T [, (4.232)

(
p∗(0),−p∗(T )

) ∈ ∂�
(
y∗(0), y∗(T )

)
, (4.233)

and such that B∗p∗ ∈ Lp′
(0, T ;U).
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Equation (4.231) must be, of course, considered in the following “mild” sense:

p∗(t) = S∗(T − t)p∗(T ) −
∫ T

t

S∗(s − t)q(s)ds, 0 ≤ t ≤ T ,

where S∗(t) = (S(t))∗ = eA∗t , t ≥ 0.
Let us briefly present a few examples.

Example 4.42 Minimize

∫

Q

g(x, y)dx dt +
∫

Σ

h(u)dx dt + 1

2

∫

Ω

∣
∣y(T , s) − ξ(x)

∣
∣2

dx (4.234)

in y ∈ C([0, T ];L2(Ω)) and u ∈ Lp(0, T ;L2(T )) subject to

yt − Δy = 0 in Q = ]0, T [ × Ω,

y = u on Σ = ]0, T [ × ∂Ω,

y(0, x) = u0(x), x ∈ Ω.

(4.235)

Here, Ω is an open domain of R
n with a smooth boundary ∂Ω and ξ ∈ L2(Ω)

is a given function. The function g : Ω × R → R is continuous and convex in y,
measurable in x, and satisfies

∣
∣g(x, y)

∣
∣ ≤ C|y|2 + ζ(x) a.e. x ∈ Ω, y ∈R,

where ζ ∈ L1(Ω). As regards the function h : R → R
∗
, it is assumed convex, lower-

semicontinuous and satisfying the growth condition

h(u) ≥ C1|u|2 + C2 for all u ∈R,

where C1 > 0.

Theorem 4.41 is applicable with E = L2(Ω), U = L2(∂Ω), A = Δ, D(A) =
H 1

0 (Ω) ∩ H 2(Ω), B defined as in Example 4.42 and

�(y1, y2) = 1

2

∫

Ω

∣
∣y2(x) − ξ(x)

∣
∣2 dx if y1 = y0 and

= +∞ if y1 �= y0,

L(t, y,u) =
∫

Ω

g(x, y)dx +
∫

∂Ω

h(u)dx.

According to estimate (4.228), we should choose p > 4. Thus, recalling (4.218), by
Theorem 4.41, the pair (y∗, u∗) is optimal in problem (4.234) if and only if there
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exist p∗ ∈ C([0, T ];L2(Ω)) and q ∈ L1(0, T ;L2(Ω)) satisfying the system

p∗
t + Δp∗ = q in Q,

q(t, x) ∈ ∂yg
(
x, y∗(x, t)

)
a.e. (t, x) ∈ Q,

p∗ = 0 on Σ,

∂p∗

∂ν
∈ ∂h(u∗) a.e. in Σ,

y∗(0, x) = y0(x), p∗(T , x) + y∗(T , x) = ξ(x) a.e. x ∈ Ω.

(4.236)

Example 4.43 We now present an optimal control problem in fluid dynamics:

Min

{
1

2

∫ T

0

∫

Ω

∣
∣y(x, t)

∣
∣2 dt +

∫ T

0

∫

∂Ω

∣
∣u(x, t)

∣
∣2 dx dt

}

+ 1

2

∫

Ω

∣
∣y(x, t)

∣
∣2 dx

subject to (4.221).
(4.237)

In the context of fluid dynamics governed by the Oseen–Stokes system (4.221),
problem (4.237) expresses the regulation of the turbulent kinetic energy of the fluid
through the boundary control u.

The existence and uniqueness of an optimal pair (y∗, u∗) is immediate. As re-
gards the first-order optimality conditions, by Theorem 4.41 we have

u∗ = ν0
∂q∗

∂ν
in (0, T ) × Ω, (4.238)

where q∗ is the solution to the adjoint system

∂q∗

∂t
− ν0Δq∗ − (∇ · a)q∗ + ∇(b · q∗) = ∇p + y∗ in (0, T ) × Ω,

∇ · q∗ = 0, in (0, T ) × Ω,

q∗ = 0 on (0, T ) × ∂Ω,

q∗(T , x) = −y∗(T , x) in Ω.

(4.239)

4.3.3 Proof of Theorem 4.41

Since the proof follows closely that of Theorem 4.5, it is only sketched.
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Let (y∗, u∗) ∈ C([0, T ];E)×Lp(0, T ;U) be an optimal pair in problem (4.230).
For any λ > 0, consider the approximating control problem

Minimize

{∫ T

0

(
Lλ(t, y,u) + p−1‖u − u∗‖p

)
dt + �λ

(
y(0), y(T )

)

+ 1

2

∣
∣y(0) − y∗(0)

∣
∣2

}

(4.240)

over all (y,u) ∈ C([0, T ];E) × Lp(0, T ;U) subject to (4.207). It follows, as in the
proof of Theorem 4.5, that problem (4.240) has a unique optimal solution (yλ,uλ)

and ∂Lλ(t, yλ,uλ) ∈ Lp(0, T ;E) × Lp(0, T ;U). Let pλ ∈ C([0, T ];E) be defined
by

pλ(t) = S∗(T − t)pλ(T ) −
∫ T

t

S∗(s − t)∂yLλ

(
s, yλ(s), uλ(s)

)
ds. (4.241)

Next, since (yλ,uλ) is optimal, we have

∫ T

0

((
∂yL(t, yλ,uλ), y

) + 〈
∂uLλ(t, yλ,uλ) + ‖uλ − u∗‖p−2(uλ−u∗), v

〉)
dt

+ (
∂�λ

(
yλ(0), yλ(T )

)
,
(
y(0), y(T )

)) + (
yλ(0) − y∗(0), y(0)

) = 0, (4.242)

for all v ∈ Lp(0, T ;U) and y ∈ C([0, T ];E) satisfying (4.207), where f = 0. Then,
after some calculations involving Fubini’s theorem, we get

B∗pλ − ‖u∗ − uλ‖p−2(uλ − u∗) = ∂uLλ(t, yλ,uλ), a.e. t ∈ ]0, T [. (4.243)

By (4.242) and (4.243), we also have
(
pλ(0) + y∗(0) − yλ(0),−pλ(T )

) = ∂�λ

(
yλ(0), yλ(T )

)
. (4.244)

We have
∫ T

0

(
L̇λ(t, yλ,uλ) + p−1‖uλ − u∗‖p

)
dt + �λ

(
yλ(0), yλ(T )

) + 1

2

∣
∣yλ(0) − y∗(0)

∣
∣2

≤
∫ T

0
L(t, y∗, u∗)dt + �

(
y∗(0), y∗(T )

)
,

and thus all uλ remain in a bounded subset of Lp(0, T ;U). Then arguing as in the
proof of Lemma 4.8, we find that for λ → 0

uλ → u∗ strongly in Lp(0, T ;U), (4.245)

yλ → y∗ in C
([0, T ];E)

. (4.246)

Similarly, by the same reasoning as in the proof of Lemma 4.9, we infer that
∣
∣pλ(T )

∣
∣ ≤ C, 0 < λ ≤ 1. (4.247)
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Next, according to Assumption C, there exist functions α,β ∈ Lp(0, T ) and vh :
[0, T ] → U such that ‖vh(t)‖ ≤ β(t), a.e. t ∈ ]0, T [ and, for all h ∈ E, |h| = 1,

Lλ

(
t, y∗(t) + ρh,vj (t)

) ≤ L
(
t, y∗(t) + ρh,vj (t)

) ≤ α(t).

This yields

∣
∣∂yLλ(t, yλ,uλ)

∣
∣ ≤ C

(
β(t) + ∥

∥uλ(t)
∥
∥
)(∥

∥u∗(t) − uλ(t)
∥
∥p−1

+ ∥
∥B∗pλ(t)

∥
∥
) + δ(t) a.e. t ∈ ]0, T [, (4.248)

where δ ∈ Lp(0, T ). We set qλ = ∂yLλ(t, yλ,uλ). By (4.241) and (4.248), we have

∥
∥B∗pλ(t)

∥
∥ ≤ C

(

ζ(T − t) +
∫ T

t

ζ(s − t)
(
β(s) + ∥

∥uλ(s)
∥
∥
)

× (∥
∥B∗pλ(s)

∥
∥ + ∥

∥u∗(s) − uλ(s)
∥
∥p−1)ds + 1

)

. (4.249)

Next, by Young’s inequality, we have for p̃λ(s) = pλ(T − s), ũλ(s) = uλ(T − s)

(∫ ν

0

(∫ t

0
ζ(s − t)

∥
∥ũλ(s)

∥
∥
∥
∥B∗p̃λ(s)

∥
∥ds

)p′

dt

) 1
p′

≤
(∫ ν

0

∣
∣ζ(t)

∣
∣p

′
dt

) 1
p′ ∫ ν

0

∥
∥ũλ(s)

∥
∥
∥
∥B∗p̃λ(s)

∥
∥ds

≤ η(ν)

(∫ ν

0

∥
∥B∗pλ(t)

∥
∥p′

dt

) 1
p

, 0 ≤ ν ≤ T ,

where limt→0 η(t) = 0.
We may, therefore, conclude by (4.249) that {∫ T

T −ν
‖B∗pλ‖p′

dt} is bounded for
some positive constant ν. Then, by (4.241), we see that |pλ(t)| are uniformly on
[T −ν,T ]. Now, reasoning as above, with T replaced by T −ν, we find after several
steps that {B∗pλ} is bounded in Lp′

(0, T ;U) and
∣
∣pλ(t)

∣
∣ ≤ C, ∀t ∈ [0, T ]. (4.250)

It should be observed by (4.248) that {qλ} ⊂ L1(0, T ;E) is bounded and
{∫

Ω
qλ dt;Ω ⊂ [0, T ]} are uniformly absolutely continuous. Then, according to the

Dunford–Pettis criterion, {qλ} is a weakly compact subset of L1(0, T ;E). Thus,
extracting a subsequence if necessary, we may assume that

qλ → q weakly in L1(0, T ;E),

pλ(T ) → pT weakly in E,

pλ → p weak-star in L∞(0, T ;E),

B∗pλ → B∗p weakly in Lp′
(0, T ;U).

(4.251)
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It follows by (4.248) and (4.251) that q ∈ Lp(0, T ;E), while by (4.241)

pλ(t) → p(t) = S∗(T − t)pT −
∫ T

t

S∗(s − t)q(s)ds for t ∈ [0, T ]

in the weak topology of E.
Since yλ(t) → y∗(t) uniformly on [0, T ], we may pass to the limit into (4.244)

to get
(
p(0),−p(T )

) ∈ ∂�
(
y∗(0), y∗(T )

)
.

Similarly, by (4.243), (4.245), (4.246), and (4.251), it follows that
(
q(t),B∗p(t)

) ∈ ∂L
(
t, y∗(t), u∗(t)

)
, a.e. t ∈ ]0, T [,

as claimed. This concludes the proof of Theorem 4.41.

Remark 4.44 A duality theory for problem (4.224) could be developed following
the pattern of Sect. 4.1.8, but the details are left to the reader.

4.4 Optimal Control Problems on Half-Axis

We study here Problem (P) on the half-axis R+ = (0,∞) and its implication in the
stabilization of linear systems. It is apparent from the previous development that,
in this framework, an existence theory for problem (P), as well as the maximum
principle type result, requires some stabilizability assumption on the pair (A,B).

4.4.1 Formulation of the Problem

We are given two real and reflexive Banach spaces E and U which are strictly con-
vex along with their duals E∗ and U∗. A : D(A) ⊂ E → E is the infinitesimal gen-
erator of a C0-semigroup {S(t); t ≥ 0} on E. Then the adjoint operator A∗ generates
the dual semigroup S∗(·).

Now, we consider the linear evolution Cauchy problem

x ′(t) = Ax(t) + Bu(t), t ≥ 0,

x(0) = x0,
(4.252)

where B is a linear continuous operator from U into E and u : R+ → U is a given
integrable function. As in the previous sections, by a solution to (4.252) we here
mean a “mild” solution, that is,

x(t) = S(t)x0 +
∫ t

0
S(t − s)Bu(s)ds, t ≥ 0. (4.253)
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The problem to be studied is that of minimizing

(P∞)

∫ ∞

0
L

(
x(t), u(t)

)
dt

in u ∈ L2
loc(R

+;U) and x ∈ C(R+;E) subject to (4.252). Here, x0 is fixed in E

and L : E × U → R
+ is a lower-semicontinuous convex function satisfying the

condition

L(x,u) ≥ C1‖u‖2 + C2|x|2 + C3 for (x,u) ∈ E × U, (4.254)

where C1 > 0 and C2,C3 are real constants.
For any x0 ∈ E and u ∈ L2

loc(R
+;U), we denote by x(t, x0, u) the corresponding

solution to (4.253). Let G : L2
loc(R

+;U) × E → R
∗

be defined by

G(u,x0) =
∫ ∞

0
L

(
x(t, x0, u), u(t)

)
dt.

Inasmuch as L ≥ 0, we infer that G(u,x0) is well defined (unambiguously either a
real number or +∞) for each (u, x0) ∈ L2

loc(R;U)×E. In terms of the functional G,
Problem (P∞) can equivalently be written as

min
{
G(u,x0); u ∈ L2

loc

(
R

+;U)} = ψ(x0). (4.255)

As in the case of optimal control problems on finite intervals, a function u for which
the infimum in (4.255) is attained is referred to as an optimal arc.

Let Dom(ψ) be the effective domain of the function ψ : E → R
+.

Proposition 4.45 For every x0 ∈ Dom(ψ), the infimum defining ψ(x0) is attained.
Moreover, the function ψ is convex and lower-semicontinuous on E.

Proof The proof of existence is standard but we reproduce it for the sake of com-
pleteness. Let x0 ∈ Dom(ψ) be fixed and let {un} ⊂ L2

loc(R
+;U) be such that

ψ(x0) ≤ G(un, x0) ≤ ψ(x0) + 1

n
, n = 1,2, . . . . (4.256)

We set xn(t) = x(t, x0, un) and fix any T > 0. After some calculation involv-
ing (4.252) and inequalities (4.254) and (4.256), we find that the {un} remain in
a bounded subset of L2(0, T ;U). Since the space L2(0, T ;U) is reflexive, we may
assume that

un → u weakly in L2(0, T ;U). (4.257)

Then, by (4.252), it follows that

xn(t) → x(t) for all t ≥ 0 weakly in E
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and

xn → x weakly in every L2(0, T ;E). (4.258)

Since the function (y, v) → ∫ T

0 L(y(y), v(t))dt is convex and lower-semicontinuous
and, therefore, weakly lower-semicontinuous on L2(0, T ;E) × L2(0, T ;U), it fol-
lows that

∫ T

0
L

(
x(t), u(t)

)
dt ≤ ψ(x0) for all T > 0.

Hence,
∫ ∞

0 L(x(t), u(t))dt = ψ(x0), as claimed.
Let x0 and y0 be arbitrary but fixed in E and let λ ∈ [0,1].
We set x0

λ = λx0 + (1−λ)y0 and consider the pairs (x1, u1), (y1, v1) and (xλ,uλ)

such that

ψ(x0) =
∫ ∞

0
L

(
x1(t), u1(t)

)
dt, ψ(y0) =

∫ ∞

0
L

(
y1(t), v1(t)

)
dt,

and

ψ
(
x0
λ

) =
∫ ∞

0
L

(
xλ(t), uλ(t)

)
dt.

Since xλ(0) = x0
λ and L is convex, we have

ψ
(
x0
λ

) ≤
∫ ∞

0
L

(
λx1 + (1 − λ)y1, λu1 + (1 − λ)v1

)
dt

≤ λ

∫ ∞

0
L(x1, u1)dt + (1 − λ)

∫ ∞

0
L(y1, v1)dt = λψ(x0) + (1 − λ)ψ(y0),

and, therefore, ψ is convex too.
To prove that ψ is lower-semicontinuous, consider a sequence xn

0 → x0 for
n → ∞. Let (xn,un) be such that

ψ
(
xn

0

) =
∫ ∞

0
L(xn,un)dt.

Arguing as in the first part of the proof, we infer that {un} is weakly compact in
L2

loc(R
+;U). Hence, on some subsequence, again denoted {un}, we have for every

T > 0

un → ũ weakly in L2(0, T ;U),

xn(t) → x̃(t) weakly in E for every t ∈ [0, T ].
Hence,

lim inf
n→∞

∫ T

0
L(xn,un)dt ≥

∫ T

0
L(x̃, ũ)dt for all T > 0
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and, therefore,

ψ(x0) ≤ lim inf
n→∞ ψ

(
xn

0

)
,

as claimed. �

4.4.2 Optimal Feedback Controllers for (P∞)

Let H : E × U∗ →R be the Hamiltonian function associated with L, that is,

H(y,q) = sup
{〈q, v〉 − L(y, v); v ∈ U

}

and let ∂H = −(−∂yH, ∂qH) be the subdifferential of H . Unless stated otherwise,
the following hypotheses are in effect throughout this section.

(i) The function H is everywhere finite on E × U∗. Furthermore, one has

H(x,0) ≤ 0, H(x, q) ≤ C
(|x|2 + ‖q‖2 + 1

)
, ∀(x, q) ∈ E × U∗.

(ii) There exists R > 0, such that
(a) S(0,R) ⊂ Dom(ψ).
(b) For each x0 ∈ S(0,R) there exist a sequence Tn → +∞ and the controllers

un ∈ L2(0, Tn;U) such that x(Tn, x0, un) ∈ S(0,R).

Here, S(0,R) is the open ball {x ∈ E; |x| < R}.
As seen earlier, the condition that −∞ < H < +∞ on E ×U∗ implies that H is

continuous and ∂H is locally bounded on E × U∗.
By hypothesis (i), it follows that L satisfies (4.254) and

L(y, v) ≥ 0 for all (y, v) ∈ E × U. (4.259)

The controllability hypothesis (ii) holds in some notable cases. In particular, it is
satisfied in the situation described in Lemma 4.46 below.

Lemma 4.46 Assume that the control system (4.252) is stabilizable and

L(0,0) = 0, (0,0) ∈ int Dom(L). (4.260)

Then hypothesis (ii) holds. In addition, if either Dom(L) = E × U or the uncon-
trolled system (4.252) is asymptotically stable and

L(y,0) < +∞, ∀y ∈ E,

then hypothesis (ii) is trivially satisfied with R = +∞.
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Here, Dom(L) denotes, as usual, the effective domain of L; that is,

Dom(L) = {
(y, v) ∈ E × U ; L(y, v) < +∞}

.

Proof By condition (4.260), there is r > 0 such that

L(y, v) < +∞ for all |y| < r, ‖v‖ < r. (4.261)

The fact that (4.252) is stabilizable means that there is a bounded linear operator
F : E → U such that the closed loop system y′ = (A + BF)y is asymptotically
stable, that is, there exist γ > 0 and M > 0 such that

∣
∣y(t)

∣
∣ ≤ M exp(−γ )

∣
∣y(0)

∣
∣, ∀t ≤ 0.

We take R = inf{ r
M

, r
M

‖F‖}, where ‖F‖ is the operator norm of F . By (4.260), we
see that

(
y(t),Fy(t)

) ∈ int Dom(L), ∀t > 0,

for each solution y with initial value x0 = y(0) in S(0,R).
On the other hand, inasmuch as the subdifferential ∂L of L is locally bounded

within int Dom(L) we may infer that
∣
∣z1(t)

∣
∣ + ∣

∣z2(t)
∣
∣ ≤ C, t > 0,

for all (z1(t), z2(t)) ∈ ∂L(y(t),Fy(t)).
The above estimates, along with the hypotheses of Lemma 4.46 yield

L
(
y(t),Fy(t)

) ≤ (
z1(t), y(t)

) + 〈
z2(t),Fy(t)

〉 ≤ C exp(−γ t), for all t ≥ 0.

Thus, part (a) of hypothesis (ii) holds with R defined as above.
The proof of the last part of the lemma is straightforward, so we omit it. �

Theorem 4.47 Assume that hypotheses (i) and (ii) are satisfied and let (x∗, u∗)
be an optimal pair for Problem (P∞) with x∗(0) = x0 ∈ S(0,R). Then the optimal
control u∗ is given as a function of optimal arc x∗ by the feedback law

u∗(t) ∈ ∂qH
(
x∗(t),−B∗∂ψ

(
x∗(t)

))
a.e. t > 0. (4.262)

As usual, ∂ψ : E → E∗ denotes the subdifferential of the function ψ .
In particular, Theorem 4.47 implies that each optimal arc to Problem (P∞) is a

solution to the closed loop system

x′ − Ax ∈ B∂qH
(
x,−B∗∂ψ(x)

)
, t > 0. (4.263)

Proof of Theorem 4.47 Let x0 be a fixed element in S(0,R) and let (x∗, u∗) be an
optimal pair for Problem (P∞) corresponding to x0 ∈ S(0,R). (The existence of
such a pair is provided by Proposition 4.45.) If ψ is the function defined by (4.255),
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then it is easy to see that, for each T > 0, (x∗, u∗) is also a solution to the following
problem:

min

{∫ T

0
L(y, v)dt + ψ

(
y(T )

); y(t) = S(t)x0 +
∫ t

0
S(t − s)Bv(s)ds,

v ∈ L2(0, T ;U)

}

. (4.264)

Here is the argument. Let v ∈ L2(0, T ;U) and y be the corresponding “mild” solu-
tion to (4.252) with y(0) = x0. Since, as seen earlier, the infimum defining ψ(y(T ))

is attained, there exists w ∈ L2
loc(R

+;U) such that

ψ
(
y(T )

) =
∫ ∞

0
L(z,w)dt; z′ = Az + Bw, z(0) = y(T ).

It should be remarked that the pair (y1, v1) defined by

y1(t) =
{

y(t), 0 ≤ t ≤ T ,

z(t − T ), T < t < ∞,

v1(t) =
{

v(t), 0 ≤ t ≤ T ,

w(t − T ), T < t < ∞
satisfies (4.252). We have

ψ(x0) =
∫ ∞

0
L(x∗, u∗)dt ≤

∫ ∞

0
L(y1, v1)dt =

∫ T

0
L(y, v)dt + ψ

(
y(T )

)
.

Thus, we may infer that ψ(x∗(T )) ≥ ∫ ∞
T

L(x∗, u∗)dt and, therefore,

ψ
(
x∗(T )

) =
∫ ∞

T

L
(
x∗(t), u∗(t)

)
dt.

Let {Tn} be the sequence defined in hypothesis (ii). According to this hypothe-
sis, for a sufficiently large n there exists an admissible control un on [0, Tn] such
that x(Tn, x0, un) ∈ int Dom(ψ). Thus, Assumption (E) of Theorem 4.5 is satisfied.
Since the other assumptions automatically hold, we may apply this theorem to prob-
lem (4.264) to infer that for each n there is a continuous function pn; [0, Tn] → E∗
which satisfies the equation

pn(t) = S∗(Tn − t)pn(Tn) −
∫ Tn

t

S∗(s − t)qn
1 (s)ds (4.265)

on the interval [0, Tn] and the final condition

pn(Tn) ∈ −∂ψ
(
x∗(Tn)

)
, (4.266)
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where qn
1 ∈ L2(0, Tn;E∗) satisfies the equation

(
qn

1 (t),B∗pn(t)
) ∈ ∂L

(
x∗(t), u∗(t)

)
a.e. t ∈ ]0, Tn[. (4.267)

(As pointed out before, ∂L : E ×U → E∗ ×U∗ stands for the subdifferential of L.)
It follows, therefore, that

u∗(t) ∈ ∂qH
(
x∗(t),B∗pn(t)

)
a.e. t ∈ ]0, Tn[. (4.268)

To conclude the proof, it remains to show that

pn(t) ∈ −∂ψ
(
x∗(t)

)
for all t ∈ [0, Tn].

Here is the argument. Let h be arbitrary in Dom(ψ) and let v ∈ L2
loc(R;U) and

y(t) = S(t)h + ∫ T

0 S(t − s)Bv(s)ds be such that ψ(h) = ∫ ∞
0 L(y, v)dt . Let t be

arbitrary but fixed in the interval [0, Tn] and let yt (s) = y(s − t), vt (s) = v(s − t),
t < s < +∞. It follows from (4.252) and the definition of ∂L that

L
(
x∗(s), u∗(s)

) ≤ L
(
yt (s), vt (s)

) + (
x∗(s) − yt (s), q

n
1 (s)

)

+ 〈
u∗(s) − vt (s),B

∗pn(s)
〉

a.e. s > 0.

We integrate the latter on the interval [t, Tn] to obtain after some calculations

−(
pn(t), x

∗(t) − h
) + (

pn(Tn), x
∗(Tn) − y(Tn − t)

)

≥
∫ Tn

t

L
(
x∗(s), u∗(s)

)
ds −

∫ Tn−t

0
L

(
y(s), v(s)

)
ds

= ψ
(
x∗(t)

) − ψ
(
x∗(Tn)

) − ψ(h) − ψ
(
y(Tn − t)

)
.

Combining the latter with (4.266), we get

−(
pn(t), x

∗(t) − h
) ≥ ψ

(
x∗(t)

) − ψ(h) for t ∈ [0, Tn],
as claimed. This completes the proof. �

Let us assume now that every “mild” solution to system (4.252) with the initial
value x(0) in D(A) is a.e. differentiable. This happens, for example, if A gener-
ates an analytic semigroup and if the function x → ∂qH(x,−B∗∂ψ(x)) is Fréchet
differentiable. Suppose further that Dom(ψ) = E and set K = ∂ψ .

Let (x∗, u∗) be a solution to (P∞). We have

(
ψ

(
x∗(t)

))′ + L
(
x∗(t), u∗(t)

) = 0 a.e. t > 0,

which in conjunction with the conjugacy formula defining the Hamiltonian H yields

(
ψ

(
x∗(t)

))′ − 〈
u∗(t),B∗Kx∗(t)

〉 = H
(
x∗(t),−B∗Kx∗(t)

)
, a.e. t > 0.
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Using the chain rule differentiation formula
(
ψ

(
x∗(t)

))′ = (
Kx∗(t), (x∗)′(t)

)
, a.e. t > 0,

and keeping in mind that x∗ is a solution to system (4.252), we get

H
(
x∗(t),−B∗Kx∗(t)

) − (
Ax∗(t),Kx∗(t)

) = 0 for all t ≥ 0,

and, therefore, K must satisfy the stationary Hamilton–Jacobi equation

H(h,−B∗Kh) − (Ah,Kh) = 0 for all h ∈ D(A). (4.269)

It should be mentioned that a direct approach to the existence in (4.269) is hard
to obtain and also that the uniqueness of a regular solution is improbable. However,
it can be studied in the framework of “viscosity solution” theory.

4.4.3 The Hamiltonian System on Half-Axis

We say that a given pair of continuous functions x :R+ → E and p : R+ → E∗ is a
solution to the Hamiltonian system

x′ − Ax ∈ B∂qH(x,B∗p), t ≥ 0,

p′ + A∗p ∈ −∂xH(x,B∗p), t ≥ 0,
(4.270)

if there exist functions q1 ∈ L2
loc(R

+;E∗) and u ∈ L2
loc(R

+;U) such that

x(t) = S(t)x(0) +
∫ t

0
S(t − s)Bq2(s)ds for t ≥ 0,

p(t) = S∗(T − t)p(T ) −
∫ T

t

S∗(s − t)q1(s)ds for all 0 ≤ t ≤ T ,

(4.271)

and

q2(t) ∈ ∂qH
(
x(t),B∗p(t)

)
,

q1(t) ∈ −∂xH
(
x(t),B∗p(t)

)
, a.e. t > 0,

(4.272)

or, equivalently,
(
q1(t),B

∗p(t)
) ∈ ∂L

(
x(t), q2(t)

)
, a.e. t > 0. (4.272′)

Here, (−∂yH, ∂qH) = ∂H . (See (2.159) and (2.160).)
As seen in Proposition 4.45, under hypotheses (i) and (ii), Problem (P∞) has at

least one solution (x,u). Our concern here is to characterize this optimal pair in
terms of the Hamiltonian system (4.270). To this aim, besides (i) and (ii), further
assumptions are necessary:
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(j) (0,0) is a saddle-point of H and H(0,0) = 0.
(jj) For each r > 0, inf{−H(y,0); |y| = r} > 0.

(jjj) For each r > 0, there is a real positive function ω on R
+ such that

lim
t↓0

ω(t)

t
= 0, H(y, q) ≤ ω

(‖q‖) for all q ∈ U∗ and |y| ≤ r. (4.273)

For the time being, the following consequences of the above assumptions are useful.

Lemma 4.48 Let H satisfy (j) and (jjj) and let L be the Lagrangian function asso-
ciated with H . Then L ≥ 0 on E×U , L(0,0) = 0 and there exists a positive function
γ defined on R

+ such that γ (ρ)
ρ

→ 0 for ρ → 0 and

L(y, v) ≥ ρ‖v‖ − γ (ρ)max(1, y) for all ρ > 0, y ∈ E. (4.274)

Proof By the definition of the Lagrangian function L, we have

L(y, v) = sup
{〈q, v〉 − H(y,q); q ∈ U

}
,

which, in virtue of assumption (j), implies that L(0,0) = 0 and L ≥ 0. The latter
also implies that

L(y, v) ≥ ρ‖v‖ − H(y,ρw) for all ρ > 0, w = Ψ (v)

‖v‖ ·

On the other hand, since the function y → H(y,ρw) is concave, we have

H(y,ρw) ≤ |y|H
(

y

|y| , ρw

)

for |y| ≤ 1.

Combining this inequality with assumption (jjj), we find (4.274), as claimed (for
|y| ≤ 1, inequality (4.274) is a direct consequence of (4.273)). �

Theorem 4.49 Let (x∗, u∗) be an optimal pair for Problem (P∞) with |x∗(0)| < R.
Then, under hypotheses (i), (ii), (j), (jj) and (jjj), there exists a continuous function
p satisfying along with x∗ and q2 = u∗ system (4.270) and the conditions

lim
t→∞x∗(t) = 0,

∣
∣p(t)

∣
∣ bounded on R

+. (4.275)

Moreover, one has

p(t) ∈ −∂ψ
(
x∗(t)

)
for every t ≥ 0. (4.276)

Conversely, if the pair (x,u) satisfies system (4.271) (with q2 = u) and condi-
tions (4.275), then it is optimal in Problem (P∞).
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Proof As seen in the proof of Theorem 4.47, for each n there is a function pn :
[0, Tn] → E∗ satisfying (4.265)–(4.267). Moreover, we have

ψ
(
x∗(t)

) =
∫ ∞

t

L(x∗, u∗)ds for t ≥ 0, (4.277)

pn(t) ∈ −∂ψ
(
x∗(t)

)
for t ∈ [0, Tn]. (4.278)

Next, by Lemma 4.48, we have

∫ t+h

t

∥
∥u∗(s)

∥
∥ds ≤ 1

ρ

∫ t+h

t

L(x∗, u∗)ds + γ (ρ)

ρ

(

h +
∫ t+h

t

|x∗|ds

)

,

for all t, h > 0 and ρ > 0. Since L(x∗, u∗) ∈ L1(R+), we infer that

∫ t+h

t

∥
∥u∗(s)

∥
∥ds ≤ θ(t)

(

1 +
∫ t+h

t

|x∗|ds

)

for all t ≥ 0, (4.279)

where limt→∞ θ(t) = 0. The latter combined with the obvious equality

x∗(t + h) = S(h)x∗(t) +
∫ h

0
S(h − s)Bu∗(t + s)ds, t, h > 0,

yields
∣
∣x∗(t + h)

∣
∣ ≤ C

(∣∣x∗(t)
∣
∣ + θ̃ (t)

)
for t ≥ 0, h ∈ [0,1], (4.280)

where C is independent of t and h and limt→∞ θ̃ (t) = 0. On the other hand, the
obvious inequality

L(x,u) ≥ −H(x,0) for all x ∈ E, u ∈ U,

implies that −H(x∗,0) ∈ L1(R+). Hence,

−H
(
x∗(t),0

) ≤ δ(T ) for t ∈ [T ,+∞[\ET ,

where δ(T ), and the Lebesgue measure of ET tends to zero for T → +∞. Along
with hypothesis (jj), this implies that

∣
∣x∗(t)

∣
∣ ≤ η(T ) for t ∈ [T ,+∞[\ET ,

where η(T ) → 0 for T → +∞. Then, by estimate (4.280), we may conclude that

lim
t→∞ x∗(t) = 0.

In particular, we infer that there is T > 0 such that x∗(t) ∈ int Dom(ψ) for t ≥ T .
Since ∂ψ is locally bounded on int Dom(ψ), it follows by (4.278) that

∣
∣pn(t)

∣
∣ ≤ C for t ≥ T , and n sufficiently large. (4.281)
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On the other hand, by (4.267) and the definition of ∂L, we have

ρ
(
qn

1 (t),w
) + 〈

B∗pn(t), u
∗(t) − v(t)

〉

≥ L
(
x∗(t), u∗(t)

) − L
(
x∗(t) − ρw,v(t)

)
, (4.282)

for all ρ > 0 and w ∈ E. If we take v(t) ∈ ∂pH(x∗(t) − ρw,0), we get

L
(
x∗(t) − ρw,v(t)

) = −H
(
x∗(t) − ρw,0

)

and, therefore,
∥
∥v(t)

∥
∥ + L

(
x∗(t) − ρw,v(t)

) ≤ C,

for all t ≥ 0, |w| = 1 and ρ sufficiently small. It now follows from (4.282) that

ρ
∣
∣qn

1 (t)
∣
∣ ≤ C

(∥
∥u∗(t)

∥
∥
(∣
∣pn(t)

∣
∣ + 1

) + 1
)

for t ≥ 0,

which, along with the equation

pn(t) = S∗(T − t)pn(T ) −
∫ T

t

S∗(s − t)qn
1 (s)ds, 0 ≤ t ≤ T ≤ Tn, (4.283)

implies that {|pn(t)|} are uniformly bounded on [0, T ]. Hence, by (4.281), we may
infer that

∣
∣pn(t)

∣
∣ ≤ C for all t ≥ 0 and n = 1, . . . . (4.284)

Next, by the definition of ∂H (see (2.144)), we have

ρ
(
qn

1 ,w
) ≤ H(x∗,B∗pn) − H(x∗ − ρw,B∗pn) for all ρ > 0, w ∈ E,

and

−H(x∗ − ρw,B∗pn) ≤ −H(x∗ − ρw,0) + 〈
∂qH(x∗ − ρw,0),B∗pn

〉
.

Since H and ∂H are locally bounded, we have
∣
∣qn

1 (t)
∣
∣ ≤ C for all t > 0 and all n.

Thus, extending qn
1 by zero outside the interval [0, Tn], we may assume that

qn
q → q1 weak-star in L∞(

R
+;E∗).

On the other hand, it follows by (4.284) that there exists an increasing sequence
tj → +∞ and a subsequence of {pn} (again denoted pn) such that, for n → ∞,

pn(tj ) → pj weakly in E∗ for all j .

Since (4.283) is satisfied for all T = tj < Tn, we infer that there exists a function
p :R+ → E∗ such that p(tj ) = pj ,

pn(tj ) → p(tj ) weakly in E∗ for all j
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and

p(t) = S∗(tj − t)p(tj ) −
∫ tj

t

S∗(s − t)q1(s)ds, 0 ≤ t ≤ tj ,

for all j = 1,2, . . . . Letting n → ∞ in (4.278), we get (4.276), as claimed. Note
also that by (4.267) we have

(
q1(t),B

∗p(t)
) ∈ ∂L

(
x∗(t), u∗(t)

)
, a.e. t > 0,

while (4.284) implies that |p(t)| is bounded over R+. Thus, x∗,p and u∗ satisfy all
the requirements of the theorem. The sufficiency of condition (4.275) for optimality
is immediate. �

Remark 4.50 It follows from Theorem 4.49 that the feedback control (4.262) stabi-
lizes system (4.252) and

{
(x,p) ∈ E × E∗; p + ∂φ(x) � 0

}

is a positively invariant manifold of system (4.270).

Another important consequence is that, by (4.272) and (4.276), the optimal con-
trol u∗ is expressed in feedback form as

u∗(t) = ∂qH
(
x∗(t),−B∗∂ψ

(
x∗(t)

))
.

We present now other qualitative aspects concerning the Hamiltonian sys-
tem (4.270). The following supplementary assumptions are imposed:

(v) H(y,q) is strictly convex in q for each y ∈ E.
(vj) H(y,q) is strictly concave in y for each q ∈ U or H is Gâteaux differentiable

in q .
(vjj) N(B∗) = {0} or H(y,q) is Gâteaux differentiable in y and the pair (A,B) is

“controllable”, that is, B∗S∗(t)x0 = 0 on some interval [0, T ] implies x0 = 0.

Theorem 4.51 In Theorem 4.49, suppose further that hypotheses (vj) up to (vjj)
hold. Then, for each x0 ∈ S(0,R), there exists a unique solution (x∗,p) to sys-
tem (4.270) satisfying (4.275). Moreover, ψ is Gâteaux differentiable on S(0,R)

and

lim
t→∞p(t) = 0 weakly in E∗.

Proof We prove first that for each x there exists at most one function p satisfying
system (4.270) along with x and u. Assume the contrary and let p1 be another
solution to this system. Then (4.270) implies that B∗(p−p1) = 0 a.e. t > 0, because
the function H(x, ·) is strictly convex. Moreover, by (4.270) we see that

(p − p1)
′ + A∗(p − p1) = 0 for t > 0.
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Since the pair (A,B) is “controllable”, the latter implies that p−p1 = 0, as claimed.
On the other hand, as seen in Theorem 4.49, every solution x to system (4.270)
and (4.275) is an optimal arc to Problem (P∞). If (v) holds, then the function L is
strictly convex and, therefore, for each x0, the solution of Problem (P∞) must be
unique. This fact proves the uniqueness of the solution (x,p) to system (4.270).

Denote by Γ ⊂ E × E∗ the set of all the pairs (x0,p0) having the property that
there exists a solution (x̃, p̃) to system (4.270) satisfying

x̃(0) = x0, p̃(0) = p0,

and

p̃(T ) ∈ −∂ψ
(
x̃(T )

)
, (4.285)

where T is a positive number with the property that there is a control u ∈
L2(0, T ;U) such that y(T , x0, u) ∈ S(0,R) and L(y(t, x0, u),L1(0, T ) (by hypoth-
esis (ii), such a number T always exists). As seen in Theorem 4.5, system (4.270)
with condition (4.285) and x(0) = x0 is equivalent to the optimization problem

min

{∫ T

0
L(y, v)dt + ψ

(
y(T )

);

y(t) = S(t)x0 +
∫ t

0
S(t − s)Bv(s)ds, v ∈ L2(0, T ;U)

}

. (4.286)

Since problem (4.286) admits at least one solution, we may conclude that Γ x0 �= ∅
for each x0 ∈ S(0,R). Furthermore, since, as noticed earlier, L is strictly convex,
problem (4.286) admits a unique solution which must agree on [0, T ] with (x∗, u∗).
In other words, x̃ = x∗ and p̃ = p, where (x∗,p) is the unique solution to sys-
tem (4.270) satisfying (4.275) and the initial condition x∗(0) = x0. Thus, Γ can be,
equivalently, defined as

Γ x0 = p(0) for x0 ∈ S(0,R).

In particular, we deduce that Γ is single-valued and −Γ x0 ⊂ ∂ψ(x0) for all
|x0| < R. We prove that −Γ agrees with ∂ψ within S(0,R). To this end, it suf-
fices to show that −Γ is maximal monotone on E × E∗, that is, R(Φ − Γ ) = E∗,
where Φ is the duality mapping of E. Let y∗

0 be a fixed element in E∗. The equation

Φ(x0) − Γ x0 = y∗
0 (4.287)

can equivalently be written as

x̃ ′ − Ax̃ ∈ B∂qH(x,B∗p̃), 0 ≤ t ≤ T ,

p̃′ + A∗p̃ ∈ −∂xH(x̃,B∗p̃), 0 ≤ t ≤ T ,
(4.288)

with the two-point boundary-value conditions

Φ
(
x̃(0)

) − p̃(0) = y∗
0 , p(T ) ∈ −∂ψ

(
x̃(T )

)
. (4.289)



342 4 Convex Control Problems in Banach Spaces

It is apparent that (4.288), and (4.289) are just the extremality equations in the
Hamiltonian form (see (4.266) and (4.267)) for the control problem

min

{∫ T

0
L(y, v)dt + ψ

(
y(T )

) + 1

2

∣
∣y(0)

∣
∣2 − (

y(0), y∗
0

);

y(t) = S(t)y(0) +
∫ T

0
S(t − s)Bv(s)ds, v ∈ L2(0, T ;U)

}

,

which, by hypothesis (i), admits at least one solution.
We may conclude, therefore, that (4.287) has at least one solution x0 ∈ E. Sum-

marizing, we have shown that −Γ = ∂ψ on S(0;R). In particular, we infer that
∂ψ(x0) is singleton for each |x0| < R. This fact implies that ψ is Gâteaux differen-
tiable on S(0;R) and its gradient ∇ψ = ∂ψ . On the other hand, −Γ is demicontin-
uous on S(0;R) (that is, strongly–weakly continuous) because it is single-valued,
maximal monotone and bounded within S(0;R) (its domain contains S(0;R). This
fact combined with (4.275) yields

p(t) → 0 weakly in E∗ as t → ∞,

as claimed. �

4.4.4 The Linear Quadratic Regulator Problem

Here, we consider the special case in which L is quadratic, that is,

L(y, v) = 1

2

(|Cy|2 + ‖v‖2) for y ∈ E, v ∈ U,

where C is a linear continuous operator from E into itself and E,U are real Hilbert
spaces. As regards the operators A and B , the assumptions are those from Sect. 4.1.

It should be observed that hypotheses (i), (j), (jjj) are trivially satisfied in this
special case. We say that system (4.252) is L2-controllable if, for each x0 ∈ E,
there exists v ∈ L2(R+;U) such that x(t, x0, v) ∈ L2(R+;E). As an immediate
application of Theorem 4.51, we find the following theorem.

Theorem 4.52 Assume that system (4.252) is L2-controllable. Then Problem (P∞)
has a unique optimal pair (x∗, u∗) related by feedback synthesis law

u∗(t) = −B∗Px∗(t) for t ≥ 0, (4.290)

where P is a linear, continuous, self-adjoint and positive operator on E satisfying
the algebraic Riccati equation

PBB∗P − PA − A∗P = C∗C. (4.291)

The minimal cost in (P∞) is ψ(x0) = 1
2 (Px0, x0).
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Proof The existence and uniqueness of the optimal control u∗ follow by Propo-
sition 4.1 and the strict convexity of u → L(x,u). By Theorem 4.47, u∗(t) ∈
−B∗ψ(x∗(t)), where

ψ(x0) = inf

{
1

2

∫ ∞

0

(|Cx|2 + ‖u‖2)dt;x(t) = S(t)x0 +
∫ t

0
S(t − s)Bu(s)ds

}

.

It is immediate that ψ(λx0) = λ2ψ(x0) and, for all x0, y0 ∈ E, we have the follow-
ing equality:

ψ(x0 + y0) + ψ(x0 − y0) = 2
(
ψ(x0) + ψ(y0)

)
.

Define the operator P : E → E by

(Px0, y0) = 1

2

(
ψ(x0 + y0) − ψ(x0 − y0)

)
.

Clearly, the operator P is linear, continuous, self-adjoint and positive. In particular,
we find that ψ(x0) = 1

2 (Px0, x0) and ∇ψ = P . Then, differentiating (4.269), we
get (4.291), as claimed. �

Theorem 4.53 In Theorem 4.52, if we assume, in addition, that

(a) there is a linear continuous operator K : E → E such that A + K(C∗C)
1
2 ge-

nerates an exponentially stable semigroup,

then the feedback law (4.290) stabilizes system (4.252), and (4.291) has a unique
self-adjoint and positive solution P .

Proof Let P be the operator defined above. We have u∗ = −B∗Px∗ ∈ L2(R+;U)

and (C∗C)
1
2 x∗ ∈ L2(R+;E). On the other hand, x∗ is the solution to the closed

loop system

x ′ = (
A + KQ

1
2
)
x + Bu∗ − KQ

1
2 x, x(0) = x0,

where Q = C∗C. Hence, x∗ ∈ L2(R+;E). By Lyapunov’s theorem in Hilbert
spaces (see Datko [25]), we conclude that |x∗(t)| ≤ C exp(−αt)|x0| for some α > 0,
as claimed.

Uniqueness. Suppose that P,P1 both satisfy (4.291). Under the preceding as-
sumption, we find that A − BD generates an exponentially stable semigroup S1(t),
where D = B∗P (P is given by Theorem 4.52). Write D1 = B∗P1 and notice that

((
2P1(A − BD1) + D∗

1D1 + C∗C
)
x, x

)

= ((
2P(A − BD) + D∗D + C∗C

)
x, x

)

+ (
2(P1 − P)(A − BD1)x, x

) + ∥
∥(D − D1)x

∥
∥2

.
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Since P and P1 are solutions to (4.291), we have
((

2P(A − BD) + D∗D + C∗C
)
x, x

) = 0, ∀x ∈ D(A),
((

2P1(A − BD1) + D∗
1

) + D∗
1D1 + C∗C

)
x, x) = 0, ∀x ∈ D(A),

and, therefore,

2
(
(P1 − P)(A − BD1)x, x

) + ∥
∥(D − D1)x

∥
∥2 = 0, ∀x ∈ D(A).

We set S1(t) = e(A−BD1)t . Then the latter yields

2

(

(P1 − P)
d

dt
S1(t)x, S1(t)x

)

+ ∥
∥v(t)

∥
∥2 = 0, ∀t ≥ 0,

where v(t) = (D − D1)S1(t)x. Integrating on R
+ and remembering that, for some

α > 0,
∣
∣S1(t)x

∣
∣ ≤ C exp(−αt)|x|, t ≥ 0, ∀x ∈ E,

we get

(
(P1 − P)x, x

) =
∫ ∞

0

∥
∥v(t)

∥
∥2

dt ≥ 0, ∀x ∈ E.

Hence, P1 ≥ P and, therefore, P1 = P , as claimed. This concludes the proof. �

Remark 4.54 Condition (a) is known in the literature as a “detectability assumption”
and it is satisfied in particular if C is a positive definite operator. In this case, we
derive from Theorem 4.52 the following simple result.

Corollary 4.55 The control system (4.252) is stabilizable if and only if it is L2-
controllable.

4.5 Optimal Control of Linear Periodic Resonant Systems

In this section, we study the optimal control problem

minimize
∫ T

0

(
g
(
Cy(t)

) + h
(
u(t)

))
dt (4.292)

subject to u ∈ L2(0, T ;U) and y ∈ C([0, T ];H) satisfying the state system

dy

dt
= Ay + Bu + f, t ∈ (0, T ),

y(0) = y(T ).

(4.293)
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Here, H , U and Z are real Hilbert spaces, A is the infinitesimal generator of a C0
semigroup eAt on H,B ∈ L(U,H), C ∈ L(H,Z), g : Z →R

∗
, and h : U →R

∗
are

lower-semicontinuous convex functions. The solution y to the state system (4.292)
is considered in the “mild” sense, that is,

y(t) = eAty(T ) +
∫ t

0
eA(t−s)

(
Bu(s) + f (s)

)
ds, ∀t ∈ [0, T ]. (4.293′)

It should be said that, if the system is resonant, that is, the null space of the operator
d
dt

+ A with periodic conditions is not trivial, then Assumption (E) from Sect. 4.1
does not hold, so Theorem 4.5 is not applicable, because the operator (I − eAT )

is not invertible as in the case of Problem PT . Thus, for the maximum principle, as
well as for the existence in problem (4.292), one must assume some stabilization and
detectability conditions for the pairs (A,B) and (A,C), respectively, as in the case
of Theorem 4.52. As a matter of fact, the analysis of the periodic optimal control
problem (4.292) has many similarities with that of the optimal control problem on
half-axis presented in Sect. 4.4.

We use the standard notations for the spaces of vector-valued functions on the in-
terval [0, T ]. The norms and the scalar products of H,U,Z are denoted by | · |, | · |U ,
| · |Z and (·, ·), (·, ·)U , (·, ·)Z , respectively. Given the lower-semicontinuous, convex
function ϕ on the Hilbert space X, we denote, as above, by ∂ϕ the subdifferential
of ϕ, and by ϕ∗ the conjugate of ϕ. Given a linear, densely defined operator W on a
Banach space, we denote by D(W) the domain of W , and by R(W) its range. The
dual operator is denoted by W ∗.

4.5.1 Weak Solutions and the Closed Range Property

Let A be the linear operator defined in L2(0, T ;H) as

A y = f (4.294)

if and only if

∫ T

0

((
y(t), ϕ′(t) + A∗ϕ(t)

) + (
f (t), ϕ(t)

))
dt = 0,

for all ϕ ∈ W 1,2([0, T ];H) such that A∗ϕ ∈ L2(0, T ;H); ϕ(0) = ϕ(T ). A function
y ∈ L2(0, T ;H) satisfying (4.294) is called a weak solution to the periodic problem

dy

dt
= Ay + f ; y(0) = y(T ). (4.295)

It is readily seen that the operator A is closed and densely defined in
L2(0, T ;H). Moreover, the dual operator A ∗ is defined as

A ∗z = g (4.296)
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if and only if

∫ T

0

((
z(t), ϕ′(t) − Aϕ(t)

) − (
ϕ(t), g(t)

))
dt = 0, (4.297)

for all ϕ ∈ W 1,2([0, T ];H) such that Aϕ ∈ L2(0, T ;H), ϕ(0) = ϕ(T ).
Let N(A ) and N(A ∗) be the null spaces of A and A ∗, respectively. If R(A )

(the range of A ) is closed in L2(0, T ;H), then, by virtue of the closed range theo-
rem, so is R(A ∗) and we have

L2(0, T ;H) = R(A ) ⊕ N(A ∗) = R(A ∗) ⊕ N(A ). (4.298)

This means that, for each f ∈ R(A ), the solutions y to the equation A y = f

are expressed as y = y1 + N(A ), where y1 ∈ R(A ∗) is uniquely defined. We
define A −1 as A −1f = y1 and note that, by the closed graph theorem, A −1 ∈
L(R(A ),L2(0, T ;H)). The operator (A ∗)−1 ∈ L(R(A ∗),L2(0, T ;H)) is simi-
larly defined.

Proposition 4.56 Assume that, for each m ∈ Z, the range Ym of μmiI −A is closed
in H and

sup
{∥∥(μmiI − A)−1

∥
∥

L(Ym,H)
; m ∈ Z

}
< ∞, (4.299)

where μm = 2mπ
T

. Then R(A ) is closed in L2(0, T ;H).

Here, we have again denoted by A the realization of the operator A in the com-
plexified space H .

Proof If f ∈R(A ), then there is a y ∈ L2(0, T ;H) such that

y(t) =
∑

m∈Z
ym exp(μmit), t ∈ (0, T ), (4.300)

where

ym = (μmi − A)−1fm, fm = T −1
∫ T

0
exp(−μmit)f (t)dt,

and so, by (4.299) and Parseval’s identity, we get

‖y‖L2(0,T ;H) ≤ C‖f ‖L2(0,T ;H),

where A y = f . This implies that R(A ) is closed in L2(0, T ;H), as claimed. �

Let A0 : D(A0) ⊂ L2(0, T ;H) → L2(0, T ;H) be the linear operator defined as

A0y = f (4.301)
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if and only if

y(t) = eAty(T ) +
∫ t

0
eA(t−s)f (s)ds, t ∈ (0, T ).

In other words, A0y = f if and only if y is continuous and it is a “mild” peri-
odic solution to (4.295). It is easily seen that A0 is closed and densely defined in
L2(0, T ;H). Moreover, a simple integration by parts shows that A0 ⊂ A . As a
matter of fact, we have the following result.

Proposition 4.57 A0 = A .

Proof Since, as noticed earlier, the inclusion A0 ⊂ A is immediate, we confine
ourselves to checking that A ⊂ A0. Let (y, f ) ∈ A . We have

y(t) =
∑

m∈Z
ym exp(μmit) in L2(0, T ;H); (μmi − A)ym = fm. (4.302)

Then the sequence

yN(t) =
∑

|m|≤N

ym exp(iμmt)

is convergent to y in L2(0, T ;H), and, for each N , yN is a “mild” solution
to (4.295), where f = fN = ∑

|m|≤N fm exp(iμmt). Hence,

yN(t) = eA(t−s)yN(s) +
∫ t

s

eA(t−s)fN(r)dr, 0 < s < t < T,

yN(0) = yN(T ).

(4.303)

Since yN → y and fN → f in L2(0, T ;H) and a.e. on (0, T ) (on some subse-
quence), we infer by (4.303) that {yn(T )} is strongly convergent in H to some y1
and, therefore, yN(t) is uniformly convergent to y(t) ∈ C([0, T ];H) and A y = f ,
as claimed. �

By Proposition 4.57, we have

R(A ) =
{

f ∈ L2(0, T ;H);
∫ T

0
eA(T −t)f (t)dt ∈ R

(
I − eAT

)
}

, (4.304)

N(A ) = {
y ∈ L2(0, T ;H); y(t) = eAty0,

(
I − eAT

)
y0 = 0

}
. (4.305)

Moreover, the dual operator A ∗ is given by A ∗z = g if and only if

z(t) = eA∗(T −t)z(0) +
∫ T

t

eA∗(s−t)g(s)ds, ∀t ∈ [0, T ]. (4.306)
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Proposition 4.58 R(A ) is closed in L2(0, T ;H) if and only if R(I −eAT ) is closed
in H .

Proof If R(I − eAT ) is closed in H , then, by (4.304), we see that R(A ) is closed
in L2(0, T ;H). Assume, now, that R(A ) is closed and consider the linear subspace
of H ,

X = {
x ∈ H ; eAtx ∈ R(A )

}
.

(Here, we have denoted by (eAtx) the function t → eAtx.) We have

X = R
(
I − eAT

)
. (4.307)

Here is the argument. If x ∈ R(I − eAT ), then T eAT x ∈ R(I − eAT ), and therefore
the equation

(
I − eAT

)
y0 = T eAT x

has at least one solution y0 ∈ H . Then the function

y(t) = eAty0 +
∫ t

0
eA(t−s)eAsx ds = eAty0 + teAtx

is a solution to A y = eAtx, that is, x ∈ X.
Now, let x be in X, and let y(t) = eAty(0) + teAtx be a solution to A y = eAtx.

Since y(0) = y(T ), the latter implies that eAT x ∈ R(I − eAT ), and therefore x ∈
R(I − eAT ). Since X is closed, it follows from (4.307) that so is R(I − eAT ). �

Corollary 4.59 If R(A ) is closed in L2(0, T ;H), then A −1f ∈ C([0, T ];H) for
each f ∈ R(A ) and

∥
∥A −1f

∥
∥

C([0,T ];H)
≤ C‖f ‖L1(0,T ;H), ∀f ∈ R(A ). (4.308)

Proof Since R(A ) is closed, so is R(I − eAT ), and we have, therefore,

A −1f (t) = eAt
(
I −eAT

)−1
∫ T

0
eA(T −t)f (t)dt +

∫ t

0
eA(t−s)f (s)ds, ∀t ∈ [0, T ].

Recalling that (I − eAT )−1 is continuous on R(I − eAT ), the latter implies (4.308),
as desired. �

By Riesz–Fredholm theory, we also have the following corollary.

Corollary 4.60 If eAT is compact, then R(A ) is closed and the spaces N(A ),
N(A ∗) are finite-dimensional.

Given F ∈ L(H,U), we denote by AF the operator A + BF defined from
L2(0, T ;H) to itself and we denote by A ∗

F = A ∗ + F ∗B∗ its dual.
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Definition 4.61 The pair (A,B) is said to be π -stabilizable if there is an
F ∈ L(H,U) such that R(AF ) is closed in L2(0, T ;H) and N(A ∗

F ) is finite-
dimensional.

By virtue of Proposition 4.58 and of (4.305), the pair (A,B) is p-stabilizable if
and only if there is an F ∈ L(H,U) such that R(I − e(A+BF)T ) is closed in H and
dimN(I − e(A∗+F ∗B∗)T ) < ∞. In particular, this happens if either eAT is compact
in H , or if the pair (A,B) is stabilizable, that is, there is an F ∈ L(H,U) such that
A + BF generates an exponentially stable semigroup.

Definition 4.62 The pair (A,C) is said to be π -detectable if there is a K ∈ L(Z,H)

such that R(AK) is closed in L2(0, T ;H) and N(AK) < ∞.

Here, AK = A + KC.
Throughout this paper, by a solution y to the state equation (4.293), we mean a

weak solution, that is, A y = Bu + f .

4.5.2 Existence and the Maximum Principle

We study the existence in problem (4.292) under the following assumptions:

(i) The pair (A,C) is π -detectable.
(ii) g : Z →R

∗
, h : U → R

∗
are convex and lower-semicontinuous and

g(z) ≥ α|z|Z + β, ∀z ∈ Z, (4.309)

h(u) ≥ ω|u|2U + γ, ∀u ∈ U, (4.310)

where α,ω > 0 and β,γ ∈ R.

Theorem 4.63 Assume that there is at least one admissible pair (y,u) in prob-
lem (4.292). Then, under hypotheses (i) and (ii), problem (4.292) has at least one
solution, (y∗, u∗) ∈ C([0, T ];H) × L2(0, T ;U).

Proof Let (yn,un) ∈ C([0, T ];H) × L2(0, T ;U) be such that Ayn = Bun + f and

inf (4.292) = d ≤
∫ T

0

(
g
(
Cyn(t)

) + h
(
un(t)

))
dt ≤ d + n−1. (4.311)

By (4.309) and (4.310), we have

‖Cyn‖L2(0,T ;H) + ‖un‖L2(0,T ;U) ≤ C1. (4.312)

By (i), there is a K ∈ L(Z,H) such that R(AK) is closed (AK = A + KC) and
dim N(AK) < ∞. We have

AKyn = Bun + KCyn + f (4.313)
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and set yn = y1
n + y2

n , where y1
n = A −1

K (Bun + KCyn + f ) ∈ R(A ∗
K) and y2

n ∈
N(AK). Then, by (4.308) and (4.312), we have

∥
∥y1

n

∥
∥

C([0,T ];H)
≤ C2, ∀n ∈ N. (4.314)

On the other hand, by the closed range theorem, we know that

N(AK) = N(CK) ⊕ R(C ∗
K).

We have denoted by CK ∈ L(N(AK),L2(0, T ;Z)) the operator y → Cy restricted
to N(AK). Since N(AK) is finite-dimensional, CK has closed range in L2(0, T ;Z),
and because {Cy2

n} is bounded in L2(0, T ;Z), it is bounded in L2(0, T ;Z), as well.
We have, therefore,

y2
n = z1

n + z2
n,

where {z1
n} is bounded in L2(0, T ;H) and Cz2

n = 0 a.e. in (0, T ). We may assume,
therefore, that the sequence {y1

n + z1
n} is weakly compact in L2(0, T ;H) and, on a

subsequence again denoted {n}, we have

un → u∗ weakly in L2(0, T ;U),

y1
n + z1

n → y∗ weakly in L2(0, T ;H).

Recalling that A (y1
n + z1

n) = Bun + f , we infer that A y∗ = Bu∗ + f , and, since
the convex integrand is weakly lower-semicontinuous, we get

d =
∫ T

0

(
g
(
Cy∗(t)

) + h
(
u∗(t)

))
dt; (4.315)

that is, (y∗, u∗) is optimal in problem (4.292). This completes the proof. �

In order to get the maximum principle for problem (4.292), we use the following
assumptions:

(j) The pair (A,B) is π -stabilizable.
(jj) The function g : Z → R is convex and lower-semicontinuous, h : U → R

∗
is

convex and lower-semicontinuous, int Dom(h) �= ∅.
(jjj) The function f is in C([0, T ];H), and one of the following two conditions

hold.

(jjj)1 Dom(h) = U and h is bounded on every bounded subset of U .
(jjj)2 f (t) = Bf0(t), where f0 ∈ C([0, T ];U) and −f0(t) ∈ int Dom(h), ∀t ∈

[0, T ].
Theorem 4.64 Assume that hypotheses (j), (jj) and (jjj) hold. Then the pair
(y∗, u∗) ∈ C([0, T ];H) × L2(0, T ;U) is optimal in problem (4.292) if and only
if there are p ∈ C([0, T ];H) and η ∈ L∞(0, T ;Z) such that

dy∗

dt
= Ay∗ + Bu∗ + f in (0, T ); y∗(0) = y∗(T ), (4.316)
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dp

dt
= −A∗p + C∗η in (0, T ); p(0) = p(T ), (4.317)

η(t) ∈ ∂g
(
Cy∗(t)

)
a.e. t ∈ (0, T ), (4.318)

u∗(t) ∈ ∂h∗(B∗p(t)
)

a.e. t ∈ (0, T ). (4.319)

System (4.316) and (4.317) is considered, of course, in the weak sense,

A y = Bu∗ + f ; A ∗p = −C∗η. (4.316′)

Proof It is readily seen that (4.316)–(4.319) are sufficient for optimality. To prove
necessity, we fix an optimal pair (y∗, u∗) and consider the approximation control
problem

Min

{∫ T

0

(
gε(Cy) + h(u) + 2−1(|y − y∗|2 + |u − u∗|2U + ε−1|v|2))dt

}

subject to (4.320)

A y = Bu + v + f, u ∈ L2(0, T ;U), v ∈ L2(0, T ;H), y ∈ C
([0, T ];H )

.

Here, gε ∈ C1(Z) is defined as in Sect. 2.2.3.
Arguing as above, it is easily seen that problem (4.320) has a unique solu-

tion (yε, uε, vε) ∈ C([0, T ];H) × L2(0, T ;U) × L2(0, T ;H), and arguing as in
Sect. 4.1, we have for ε → 0

uε → u∗ strongly in L2(0, T ;U),

yε → y∗ strongly in L2(0, T ;H).
(4.321)

We also have

vε → 0 strongly in L2(0, T ;H).

Next, we have

∫ T

0

((
C∗∇gε(Cyε), z

) + (yε − y∗, z) + (uε − u∗,w)U

+ h′(uε,w) + ε−1(vε, v)
)

dt ≥ 0, (4.322)

∀(z,w,v) ∈ C([0, T ];H) × L2(0, T ;U) × L2(0, T ;H) such that A z = Bw + v.
We set pε = ε−1vε . Then (4.322) yields

∫ T

0

((
C∗∇gε(Cyε) + yε − y∗, z

) + (uε − u∗,w)U

+ h′(uε,w) + (pε,A z − Bw)
)

dt ≥ 0, (4.322′)
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∀z ∈ D(A ), ∀w ∈ L2(0, T ;U). (Here, h′ is the directional derivative of h.) For
w = 0, the latter yields

A ∗pε = −C∗∇gε(Cyε) + y∗ − yε. (4.323)

Substituting the latter into (4.322′), we get

∫ T

0
(B∗pε + u∗ − uε,w)U dt ≤

∫ T

0
h′(uε,w)dt, ∀w ∈ U.

This yields

B∗pε ∈ ∂h(uε) + uε − u∗ a.e. ∈ (0, T ). (4.324)

We note also

A yε = Buε + εpε + f. (4.325)

We are going to let ε tend to 0 in (4.323) and (4.324) in order to get (4.317)–(4.319).
To this aim, some a priori estimates on pε are necessary. Assume, first, that condi-
tion (jjj)2 holds. Then, by (4.324) and by the definition of ∂h, we have

(
B∗pε(t) + u∗(t) − uε(t), uε(t) + f0(t) − ρw

)
U

≥ h
(
uε(t)

) − h
(
ρw − f0(t)

)
a.e. t ∈ (0, T ), (4.326)

∀w ∈ U , |w|U = 1, and ρ positive and sufficiently small. This yields

ρ

∫ T

0

∣
∣B∗pε(t)

∣
∣
U

dt ≤
∫ T

0

(
pε(t),A yε(t) − εpε(t)

)
dt + C3.

Finally, by (4.316′) we obtain

∫ T

0

(
ρ
∣
∣B∗pε(t)

∣
∣
U

+ ε
∣
∣pε(t)

∣
∣2)dt

≤ −
∫ T

0

((∇gε

(
Cyε(t)

)
,Cyε(t)

)
Z

+ (
yε(t) − y∗(t), yε(t)

))
dt ≤ C4,

because ∇gε is monotone. On the other hand, it follows that {yε} is strongly conver-
gent to y∗ in C([0, T ];H). Indeed, by (4.325), we see that

yε(t) = e−AF (t−s)yε(s) +
∫ t

s

e−AF (t−r)
(
Buε(r) + εpε(r) + BFyε(r)

)
dr,

0 ≤ s ≤ t ≤ T ,

and the conclusion follows by (4.321). (Here and everywhere in the following, F ∈
L(H,U) is chosen as in Definition 4.61 and AF = A + BF .) Since ∂g is locally
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bounded in H and

∇gε(z) ∈ ∂g
(
(I + ε∂g)−1z

)
, ∀z ∈ Z;

∫ T

0
gε(Cyε)dt ≤ C5,

we have
∣
∣∇gε

(
Cyε(t)

)∣
∣
Z

≤ C6, ∀ε > 0, t ∈ [0, T ]. (4.327)

We may rewrite (4.323) as

A ∗
F pε = −C∗∇gε(Cyε) − (yε − y∗) + F ∗B∗pε. (4.328)

Then, by (4.327) and Corollary 4.59, it follows that
∣
∣p1

ε (t)
∣
∣ ≤ C7, ∀t ∈ [0, T ], (4.329)

where pε = p1
ε + p2

ε and p1
ε ∈ R(AF ) = N(A ∗

F )⊥, p2
ε ∈ N(A ∗

F ).
Denote by B∗

F the operator y → B∗y defined from N(A ∗
F ) to L2(0, T ;U). Re-

calling that the space N(A ∗
F ) is finite-dimensional, we infer that B∗

F has a closed
range in L2(0, T ;U), so by the closed range theorem, it has a bounded inverse on
its range. Since N(A ∗

F ) ⊂ C([0, T ];H) and {B∗
F p2

ε } is bounded in L1(0, T ;U), it
is bounded in L2(0, T ;U) too, and we have p2

ε = q1
ε +q2

ε , where {q1
ε } is bounded in

L2(0, T ;H) and B∗q2
ε = 0 a.e. in (0, T ). We conclude, therefore, that the sequence

{p1
ε + q1

ε } is weakly compact in L2(0, T ;H). Moreover, we may write (4.328) as

A ∗
F

(
p1

ε + q1
ε

) = −C∗∇gε(Cyε) − (yε − y∗) + F ∗B∗(p1
ε + q1

ε

)
. (4.328′)

Selecting further subsequences, if necessary, we may assume that

p1
ε + q1

ε → p weakly in L2(0, T ;H),

∇gε(Cyε) → η weak-star in L∞(0, T ;Z).

Since ∂g and ∂h are maximal monotone (and, therefore, weakly–strongly closed),
we may pass to the limit in (4.323) and (4.328′) to get the optimality system (4.316)–
(4.319).

Assume, now, that condition (jjj)1 is satisfied. We set pε = p1
ε + q1

ε . Then,
by (4.324), we have

h(uε) − h(ρw) ≤ (B∗pε + u∗, uε − ρw)U,

for all w ∈ H, ρ > 0. This yields

ρ

∫ T

0

∣
∣B∗pε(t)

∣
∣
U

dt ≤ C8 + T h(ρw) +
∫ T

0

(
pε(t),A yε(t) − f (t)

)
dt

≤ T h(ρw) + C9

(

1 +
∫ T

0

∣
∣pε(t)

∣
∣dt

)

.
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Finally,
∫ T

0

∣
∣B∗pε(t)

∣
∣
U

dt ≤ Cρ + C10ρ
−1

∫ T

0

∣
∣pε(t)

∣
∣dt, (4.330)

for all ρ > 0. Choosing ρ sufficiently large, it follows by (4.328′) and (4.310) that
{p1

ε + q1
ε } is bounded in L2(0, T ;H), so we may conclude the proof as in the pre-

vious case. �

The optimal control problem

Min

{∫ T

0

(
g∗

(
v(t)

) + h∗(B∗(t)
) + (

f (t),p(t)
))

dt;

p ∈ C
([0, T ];H )

, v ∈ L2(0, T ;H)

}

(4.331)

subject to

A ∗p = −v (4.332)

is the dual of (4.292) in the sense of Sect. 4.1.8. Here, h∗ is the conjugate of h, and
g∗ is the conjugate of the function y → g(Cy).

Theorem 4.65 Under the assumptions of Theorem 4.64, the pair (y∗, u∗) is optimal
in problem (4.292) if and only if the dual problem (4.331) has a solution (p∗, v∗)
and

∫ T

0

(

g
(
Cy∗(t)

) + h
(
u∗(t)

)
dt +

∫ T

0

(
g∗

(
v∗(t)

) + h∗(B∗p∗(t)
))

+ (
f (t),p∗(t)

)
)

dt = 0. (4.333)

Proof The argument is standard (see Sect. 4.1) and so the proof is only sketched. If
(y∗, u∗) is optimal in (4.292), then, by Theorem 4.64, the optimality system (4.316)–
(4.319) has a solution (p∗, v∗ = C∗η), and, by virtue of the conjugacy relation, we
have

h(u∗) + h∗(B∗p∗) = (B∗p∗, u∗)U ,

g(Cy∗) + g∗(v∗) = (y∗, v∗).
(4.334)

Integrating from 0 to T , we get (4.333). On the other hand, for all (p, v) ∈
C([0, T ];H) × L2(0, T ;H), A ∗p = −v, we have

h(u∗) + h∗(B∗p) ≥ (B∗p,u∗)U , a.e. on (0, T ),

g(Cy∗) + g∗(v) ≥ (y∗, v), a.e. on (0, T ),
(4.335)

which imply that the pair (p∗, v∗) is optimal in problem (4.331). Conversely,
if (4.333) holds, then by (4.334) and (4.335) we see that y∗,p∗,and u∗ satisfy
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the optimality system (4.316)–(4.319), and therefore (y∗, u∗) is optimal in prob-
lem (4.292). �

We end this section with a few examples of linear control systems of the
form (4.293) for which the previous theorems are applicable.

1. Parabolic control problems. Consider the system

∂y

∂t
− Δy + b(x) · ∇y + c(x)y = Bu + f (t, x), (t, x) ∈ Ω ×R,

y = 0, on ∂Ω ×R,

y(t + T ,x) = y(t, x), ∀(t, x) ∈ Ω ×R,

(4.336)

where b ∈ W 1,∞(Ω;Rn), c ∈ L∞(Ω), f ∈ L2
loc(R;L2(Ω)) is T -periodic in t ,

while B ∈ L(L2(Ω),L2(Ω)). Here, Ω is a bounded and open subset of Rn with a
sufficiently smooth boundary ∂Ω . We may write (4.336) in the form (4.293), where
H = U = L2(Ω) and

Ay = Δy + b · ∇y − cy, D(A) = H 1
0 (Ω) ∩ H 2(Ω). (4.337)

Since the semigroup eAt generated by A on L2(Ω) is compact, it follows that R(A )

is closed in L2(0, T ;H) and N(A ∗) is finite-dimensional (Corollary 4.60). Hence,
the π -stabilizability hypothesis (j) is satisfied in the present situation with F = 0.
A similar conclusion can be reached for the π -detectability hypothesis (i).

2. Linear delay control systems. Consider the control system governed by the
delay system

y ′(t) = A0y(t) + A1y(t − h) + B0u(t) + f (t),

y(t) = y(t + T ), ∀t ∈ R,
(4.338)

where A0,A1 are n×n matrices, B0 is an n×� matrix, f ∈ L2
loc(R;Rn), f (t +T ) =

f (t), u ∈ L2(R;R�), and u(t) = u(t + T ). It is well known that this system can
be written in the form (4.293), where H = M2 = R

n × L2(−h,0;Rn), U = R
�,

B = (B0,0), and

A
(
y0, y

0) =
{

A0y0 + A1y
0(−h),

dy0

ds

}

,

D(A) = {(
y0, y

0) ∈ R
n × W 1,2([−h,0];Rn

)
, y0 = y0(0)

}
.

For each m ∈ Z, we may rewrite the equation (μmiI − A)y = (f0, f1) as

(
iμmI − A0 − e−iμmhA1

)
y0 = f0 +

∫ −h

0
e−iμm(h+s)A1f1(s)ds,

y0(s) = eiμmsy0 −
∫ s

0
eiμm(s−t)f1(t)dt,

(4.339)
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where μm = 2mπT −1. Moreover, after some calculation, we see that

N(A ∗) =
{∑

m

(
ymeiμmt ,A∗

1ymeiμm(t−s−h)
); (iμmI + A∗

0 + eiμmhA∗
1

)
ym = 0

}

.

(4.340)
By (4.339), we see that R(iμmI − A) is closed and condition (4.298) in Proposi-
tion 4.56 is satisfied. We conclude, therefore, that the corresponding operator A
has a closed range in L2(0, T ;H). Moreover, by (4.339) and (4.340), it follows that
N(A ) and N(A ∗) are finite-dimensional.

3. First-order hyperbolic systems. Consider the control system governed by the
linear system

yt (t, x) − zx(t, x) = u(t, x) + f (t, x), x ∈ (0,1), t ∈ (0, T ),

zt (t, x) − yx(t, x) = B0v(t, x) + g(t, x), x ∈ (0,1), t ∈ (0, T ),

y(t,0) = y(t,1) = 0; y(T , x) = y(x,0), z(T , x) = z(x,0), ∀x ∈ (0,1).

(4.341)
Here, B0 ∈ L(L2(0,1),L2(0,1)) and f,g ∈ C([0, T ];L2(0,1)) are given func-
tions. System (4.341) can be written in the form (4.293), where H = U =
L2(0,1) × L2(0,1), B(u, v) = (u,B0v), and A(y, z) = (zx, yx), D(A) = {y, z ∈
H 1(0,1), y(0) = y(1) = 0}. Consider the feedback control F(y, z) = (−y,0).
Then it is easily seen that the corresponding operator AF has closed range in
L2(0, T ;H), N(AF ) = N(A ∗

F ) = {(0,C);C ∈ R}, and therefore the pair (A,B)

is π -stabilizable. This simple example extends to linear control hyperbolic systems
in R

n × R
n, and it is instructive to notice that, in this case, if T is irrational, then

R(A ) is not closed; thus assumption (j) does not hold with F = 0.

4.5.3 The Optimal Control of the Wave Equation

We study here the optimal control problem

minimize
∫ T

0

(
2−1

∣
∣Cy(t)

∣
∣2
Z

+ h
(
u(t)

))
dt (4.342)

subject to u ∈ L2(0, T ;H), y ∈ L2(0, T ;U),

y′′ + Ay = Bu + f, t ∈ (0, T ),

y(0) = y(T ), y′(0) = y′(T ),
(4.343)

where A is a self-adjoint, linear, and positively defined operator in H , B ∈ L(U,H),
C ∈ L(H,Z), and h is a lower-semicontinuous convex function on U . By a weak
solution to (4.343), we mean a function y ∈ L2(0, T ;H) such that

∫ T

0

(
y(t), ϕ′′(t) + A0ϕ(t)

)
dt =

∫ T

0

(
f (t) + Bu(t), ϕ(t)

)
dt, (4.344)
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for all ϕ ∈ Y = {ϕ ∈ C2([0, T ];H) ∩ C([0, T ];D(A)); ϕ(0) = ϕ(T ), ϕ′(0) =
ϕ′(T )}. Equivalently,

W y = Bu + f, (4.343′)

where W : D(W ) ⊂ L2(0, T ;H) → L2(0, T ;H) is the linear operator defined by

W y = f iff
∫ T

0

(
y(t), ϕ′′(t) + A0ϕ(t)

)
dt =

∫ T

0

(
f (t), ϕ(t)

)
dt, ∀ϕ ∈ Y.

(4.345)
It is readily seen that W is densely defined and closed in L2(0, T ;H).

Writing (4.343) as a first-order differential equation on the product space

D(A
1
2 ) × H , we may apply the general results obtained in the previous section

to problem (4.342). However, a direct treatment of such a problem requires less
restrictive conditions in specific examples. On the other hand, for the sake of sim-
plicity, we do not put the results of this section in the general framework of the
p-stabilizability condition; we confine ourselves to assuming that R(W ) is closed
in L2(0, T ;H). By virtue of the closed range theorem, this assumption implies that

L2(0, T ;H) = R(W ) ⊕ N(W ); W −1 ∈ L
(
R(W ),L2(0, T ;H)

)
.

Arguing as in the proof of Theorem 4.63, it follows that if R(W ) is closed in
L2(0, T ;H) and N(W ) is finite-dimensional, then problem (4.342) has at least one
solution (y,u) ∈ L2(0, T ;H) × L2(0, T ;U). As regards the maximum principle,
we have the following theorem.

Theorem 4.66 Assume that R(W ) is closed, dimN(W ) < ∞, and h,f satisfy hy-
potheses (jj), (jjj). Then the pair (y∗, u∗) ∈ L2(0, T ;H)×L2(0, T ;U) is optimal in
problem (4.342) if and only if there is a p ∈ L2(0, T ;H) such that

W p = −C∗Cy, (4.346)

u∗(t) ∈ ∂h∗(B∗p(t)
)
, a.e. t ∈ (0, T ). (4.347)

We omit the proof because it is identical with that of Theorem 4.64. Since in most
of the applications the null space N(W ) is finite-dimensional (the state equation is
highly resonant), we may relax this condition as follows.

(k) R(W ) is closed and the operator y → B∗y defined from N(W ) to L2(0, T ;H)

has closed range.

Theorem 4.67 Assume that hypotheses (jj), (k) hold, f ∈ C([0, T ];H), and that
the function h has quadratic growth, i.e.,

h(u) ≤ α1|u|2U + β1, ∀u ∈ U. (4.348)

Then the pair (y∗, u∗) ∈ L2(0, T ;H) × L2(0, T ;U) is optimal in problem (4.342)
if and only if it satisfies system (4.346) and (4.347).
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Proof Let (yε, uε, vε) be the solution to the approximating problem (see (4.320))

Min

{∫ T

0

(
2−1|Cy|2Z + h(u) + 2−1(|y − y∗|2 + |u − u∗|2U + ε−1|v|2))dt;

W y = Bu + v + f

}

.

As in the proof of Theorem 4.64, we get (4.311) and (see (4.323) and (4.324))

W pε = −C∗Cyε + y∗ − yε, (4.349)

B∗pε ∈ ∂h(uε) + uε − u∗ a.e. in (0, T ). (4.350)

By (4.348) and (4.349), we have

‖B∗pε‖2
L2(0,T ;U)

≤ C1, ∀ε > 0,

and therefore, by virtue of assumption (k), we conclude via the closed range theorem
that

{
p1

ε + p3
ε

}
is bounded in L2(0, T ;H),

where pε = p1
ε + p3

ε + p4
ε and p1

ε ∈ R(W ), p3
ε ,p

4
ε ∈ N(W ), and B∗p4

ε = 0 a.e.
t ∈ (0, T ). Hence, we may pass to the limit in (4.349) and (4.350) to get (4.346)
and (4.347), as desired. �

The dual problem of (4.342) is (see (4.331) and (4.332))

Min

{∫ T

0

(
g∗(v)+h∗(B∗p)+(f,p)

)
dt; W ∗p = −v; v ∈ L2(0, T ;H)

}

. (4.351)

By using exactly the same argument, it follows that under the assumptions of The-
orem 4.66 or Theorem 4.67, the conclusions of the duality Theorem 4.65 remain
valid in the present case.

Example 4.68 The one-dimensional wave equation. Consider the control system

ytt (t, x) − v−1(x)
(
v(x)yx(t, x)

)
x

= Bu(t, x) + f (t, x), (t, x) ∈ (0,π) ×R,

y(0, t) = y(π, t) = 0, t ∈ R,

y(x, t + T ) = y(t, x), yt (x, t + T ) = yt (t, x), (t, x) ∈ (0,π) ×R,

(4.352)
where v ∈ H 2(0, T ), v(x) > 0, ∀x ∈ [0,π], B ∈ L(L2(0,π),L2(0,π)), and

ess sup
{(

v′(x)
)2 − 2v′′(x)v(x); x ∈ (0, kπ)

}
< 0.

In this case, U = L2(0,π), H = L2(0,π) is endowed with the scalar product
(y, z) = ∫ π

0 v(x)y(x)z(x)dx and

A0y = −v−1(vyx)x, D(A) = H 1
0 (0,π) ∩ H 2(0,π).
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Equation (4.352) models the forced vibrations of a nonhomogeneous string as well

as the propagation of waves in nonisotropic media. (In the latter case, ν = (ρμ)
1
2 is

the acoustic impedance, ρ is the medium density and μ is the elasticity coefficient.)
If T is a rational multiple of π , then R(W ) is closed, N(v) is finite-dimensional
(see Barbu and Pavel [17]), and Theorem 4.67 is applicable.

4.6 Problems

4.1 Find the maximum principle for the optimal control problem

Min

{∫ T

0
L

(
y(t), u(t)

)
dt; y ′ = A0y(t) + A1y(t − b) + Bu(t), t ∈ (−b,T ),

y(0) = y0, y(s) = y0(s), s ∈ (−b,0)

}

,

where L : Rn × R
m → R

∗
satisfies conditions of Theorem 4.16 (or Theorem 4.5)

and A0,A1 ∈ L(Rn,Rn), B ∈ L(Rm,Rn), b > 0.

Hint. In the space F = M2(−b,0;Rn) = R
n × L2(−b,0;Rn), we rewrite the

above delay system as

dY

dt
= A Y + Bu, Y (0) = (

y0, y
0),

where A (y0, y
0) = {A0y0 + A1y

0(−b),
dy0

ds
}, D(A ) = {(y0, y

0) ∈ R
n ×

W 1,2(−b,0;Rn); y0(0) = y0} and Y(t) = {y(t), y(t + s)}. Then we may rewrite
the above problem in the form (P) by redefining L and � as

L(Y,u) = L(y0, u), Y = (
y0, y

0),

�(Y1, Y2) =
{

0, if Y1 = (y0, y
0),

+∞, otherwise.

Then one might apply, under suitable conditions on L, Theorem 4.5. We note that
the dual system (4.100) and (4.101) has the form

p̃(t) = (
p(t),p1(t, θ)

)
, θ ∈ (−b,0),

p′(t) + A∗
T p(t) =

{
q(t), 0 < t < T − b,

q(t) − z(t − T ), T − b < t < T,

q(t) ∈ ∂xL
(
y(t), u(t)

)
, B∗p(t) ∈ ∂uL

(
y(t), u(t)

)
,

A∗
T p(t) =

{
A∗p(t) + A∗

1(t − b)p(t + b), if t + b < T,

0, if t + b > T,
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p1(0, θ) =
{

A1(θ + h), if − b < θ < 0,

0, if − b < θ < θ1,

z(t) = p1(T , t).

4.2 Show that if H : Rn × R
n → R is a concave–convex continuous function and

�i : R → R, i = 1,2, are convex and differentiable, then the hyperbolic first-order
system

∂y

∂x
− ∂pH(y,p) = 0, x ∈ (0,1),

∂p

∂x
+ ∂yH(y,p) = f (x), x ∈ (0,1),

p(0) = ∇�1
(
y(0)

)
, p(1) + ∇�2

(
y(1)

) = 0,

has a solution y for each f ∈ C[0,1].

Hint. We associate with the above system the minimization problem

Min

{∫ 1

0
L

(
y(x), y′(x)

)
dx +

∫ 1

0
f (x)y(x)dx + �1

(
y(0)

) + �2
(
y(1)

);

y ∈ W 1,1([0,1];Rn
)
}

and apply Theorem 4.5. (See Barbu [5] for a more general result pertaining to the
variational treatment of hyperbolic systems of this type.)

4.3 Let A be an infinitesimal generator of a C0-semigroup in the Banach space E

and let B ∈ L(U,E), where U is another Banach space. Assume that

∥
∥p(0)

∥
∥2

E
≤ CT

∫ T

0

∥
∥B∗p(t)

∥
∥2

U
dt,

for all the solutions p to the backward differential system p′(t) = −A∗p(t). Show
that there is a controller u∗ ∈ L2(0, T ;U) such that

∫ T

0 ‖u∗(t)‖2
U dt ≤ CT ‖y0‖2

E and
y ′ = Ay + Bu∗, t ∈ (0, T ), y(0) = y0, y(T ) = 0.

Hint. Consider the control problem

Min

{∫ T

0

1

2

∥
∥u(t)

∥
∥2

U
dt + 1

2ε

∥
∥y(T )

∥
∥2

E
; y′ = Ay + Bu, y(0) = y0

}

,

which has an optimal pair (yε, u
∗
ε) satisfying the maximum principle

p′
ε = −A∗pε, pε(T ) = −1

ε
yε(T ).
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This yields

∫ T

0

∥
∥B∗pε(t)

∥
∥2

U
dt + 1

ε

∥
∥yε(T )

∥
∥2

E
= E

(
y0,pε(0)

)
E∗ .

Letting ε → 0, we obtain the result.

4.4 Show that the solution to the eikonal equation

ϕt − ρ‖ϕx‖ = 0, t ≥ 0, x ∈R
n,

ϕ(0, x) = ϕ0(x), x ∈ R
n,

is given by ϕ(t, x) = sup{ϕ0(y); |x − y| ≤ ρt, y ∈R
n}.

Hint. One applies the Lax–Hopf formula (4.206).

4.7 Bibliographical Notes

4.1. In a particular form, the main results of this section, Theorems 4.5, 4.6, 4.16
and 4.26, were given by the first author in [2–4]. In a series of influential works
on the convex control problem of Bolza in R

n, Rockafellar [39, 41, 42, 44] has
developed a theory of the “maximum principle” in subdifferential form under
convexity assumptions which inspired the present work. However, the infinite-
dimensional case treated here presents several significant differences. For gen-
eral results on control problems governed by ordinary differential systems, we
refer the reader to the book of Berkovitz [18].

The first studies on validity of the maximum principle for a specific form
of distributed parameter optimal control problems were published in the early
1960s. The general theory of optimal Banach spaces has been studied in the
works of Balakrishnan [1] and Datko [25], among others. The book of Lions
[33] first published in 1968 represents a systematic treatment of quadratic op-
timal control problems governed by partial differential equations. The results
presented here largely encompass the previous one by the absence of differ-
entiability assumptions on the integrand L as well as by the generality of the
problem studied. The ideas contained in the present approach of convex con-
trol problems were used to develop a theory of necessary conditions for control
problems with a nonconvex cost criterion and with nonlinear state equations
(see Barbu [10, 11]). In this case, the extremality conditions are expressed in
term of Clarke’s generalized gradient.

Theorem 4.28 is new in this context, though it was known a long time ago
that the Cauchy problem associated with nonlinear operators of subpotential
type can be reformulated as convex optimization problems (see Brezis and
Ekeland [19]). Recent extensions to this principle as well as applications to the
existence theory of PDEs can be found in Visintin [46] and Ghoussoub [28].
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4.2. There exists an extensive literature on the synthesis of finite-dimensional con-
trol systems and of linear evolution control systems with quadratic cost (see
Fleming and Rishel [27], Lions [33] and the references given there), but there
appears to be little previous work on optimal feedback controllers for infinite-
dimensional control convex problems. We refer to the works [21–24] of Cran-
dall and Lions for a viscosity solution theory of the Hamilton–Jacobi equations
associated with infinite-dimensional optimal control problems (see also Barbu
and Da Prato [14]).

4.3. The abstract formulation of the boundary control systems given here arises
from the works of Fattorini [26], Balakrishnan [1], Washburn [47], Lasiecka
and Triggiani [31]. In particular, the book [32] by Lasiecka and Triggiani con-
tains a complete description of linear boundary control systems of parabolic
and hyperbolic type. Theorem 4.41 was taken from Barbu [9]. Optimality con-
ditions for linear parabolic boundary control problems with convex cost crite-
rion and state constraints have been derived by several authors including Mack-
enroth [35] and Tröltzsch [45].

4.4. The results of this section closely follow the work [7, 8] of Barbu.
4.5. The main results presented here are taken from the work [12] of Barbu.
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ε-enlargement, 118
ε-enlargement cyclically monotone, 120
ε-minimum elements, 116
ε-monotone mapping, 116
ε-subdifferential, 115
λ-quasi-subdifferential, 121
τP -bounded, 3
τP -convergent, 3

A
Absolute value, 44
Absolutely continuous, 43
Absolutely continuouspart, 47
Absorbent set, 9
Adjoint operator, 6
Affine combination, 7
Affine constraints, 164
Affine function, 154
Affine mapping, 164
Affine set, 7
Algebraic closure, 8
Algebraic interior, 8
Algebraic relative interior, 8
Analytic semigroup, 60
Antiprojection, 219
Approximatively compact set, 210
Asymptotic cone, 21
Asymptotically compact, 21
Attainable, 236
Attainable end-point, 324
Augmented Lagrangian, 184

B
Banach space, 4
Banach–Steinhauss theorem, 4
Base of neighborhoods, 2

Bellman’s equation, 302
Best approximation element, 208
Best approximation problem, 219
Biconjugate, 76
Bidual problem, 174
Bidual space, 27
Bipolar theorem, 81
Bounded measure, 44
Bounded operator, 3
Bounded variation, 42

C
Canonical form, 204
Canonical isomorphism, 6
Caristi fixed point theorem, 224
Cauchy–Schwarz inequality, 5
Closed function, 71, 127
Closed half-spaces, 13
Closed loop differential system, 301
Closed loop system, 333
Closed operator, 31
Closed set, 28
Closure of a function, 71
Coercive operator, 54
Coercivity condition, 72
Cofinite function, 92
Compatible linear topology, 1, 25
Complementary slackness condition, 162
Concave conjugate function, 81
Concave–convex-like, 138
Cone of normals, 124
Cone of pseudotangents, 165
Cone of tangents, 164
Conjugate function, 75, 82, 136
Consistent problem, 153, 159, 179
Constraint qualifications, 156
Contraction semigroup, 60
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Control, 197, 234
Control of periodic systems, 263
Controlled system, 234
Controller, 234
Convex (affine) hull, 7
Convex combination, 7
Convex function, 13, 67
Convex integrands, 94
Convex normal integrand, 237
Convex operator, 159
Convex programming problem, 153
Convex set, 6
Convolution, 216
Cost functional, 235
Critical point, 154

D
d-proximinal, 221
d-remotal set, 221
d.c. optimization problem, 219
Demicontinuousoperator, 53
Derivative of order j , 45
Detection filter problem, 201
Dieudonné’s criterion, 23
Directional differential, 86
Dissipative, 59
Domain, 83
Dual, 4
Dual cone, 76
Dual extremal arc, 242
Dual formula of the norm, 20
Dual Hamilton–Jacobi equation, 314
Dual problem, 173, 179, 206
Dual system, 24
Duality mapping, 34

E
Eberlein theorem, 34
Effective domain, 68, 128
Eikonal equation, 361
Epigraph, 68
Evolution operator, 59
Exact convolution, 216
Extended real-valued functions, 67
Extremality conditions, 205

F
Farthest distance function, 219
Farthest point, 219
Farthest point mapping, 219
Farthest point problem, 219
Feasible element, 153
Feasible function, 236
Feedback control, 297

Feedback law, 301
Feedback optimal control, 301
Fenchel duality theorem, 181
Fenchel–Rockafellas problems, 187
Fréchet derivative, 85
Fréchet differentiable, 86, 165
Fréchet differential, 166
Free boundary, 110

G
Gâteaux derivative, 85
Gâteaux differentiable, 86
Generalized complementarity problem, 113
Generalized gradient, 124, 125
Geometric Hahn–Banach theorem, 15
Gradient, 86

H
Hahn–Banach theorem, 13
Hamiltonian function, 133
Hilbert space, 5
Homogeneous hyperplane, 11
Hypograph, 68

I
Indicator function, 68
Infinite-dimensional linear programming, 205
Inner product, 4
Input, 234

K
Kalman–Riccati equation, 312
Kernel, 12
Kuhn–Tucker function, 183
Kuhn–Tucker theorem, 157

L
Lagrange (Fritz John) multiplier, 159
Lagrange function, 155, 161
Lagrange multipliers, 155
Lagrangian function, 154
Lax–Hopf formula, 315
Level sets, 68
Linear normed space, 3
Linear topology, 1
Locally bounded operator, 53
Locally convex spaces, 2
Lower-semicontinuous function, 69
Lower-topology, 70

M
Majorized measure, 44
Maximal monotone subset, 53
Measure (Radon measure), 44
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Metrizable space, 3
“mild” solution, 59
Mini-max equality, 126
Mini-max theorem of von Neumann, 137
Mini-max theorems, 136
Minkowski functional, 8
Modulus of convexity, 37
Monotone subset (operator), 53

N
Natural imbedding, 32
Nonhomogeneous hyperplane, 11
Norm, 2
Normal cone, 83
Normal convex integrand, 93
Normal problem, 174

O
Obstacle problem, 110
Open half-spaces, 13
Optimal arc, 235, 330
Optimal control, 235
Optimal controller, 235
Optimal feedback control, 297
Optimal pair, 235
Optimal solution, 153
Optimal synthesis function, 297
Optimal value function, 298
Ordering relation, 159
Orthogonal, 5
Orthogonal of the space Y , 76
Output, 234

P
Partial differential equation of dynamic

programming, 302
Penalty method, 106
Perturbed problem, 174
Pointwise additivity of a subdifferential, 215
Pointwise bounded, 4
Polar, 76
Positive-homogeneous functional, 9
Pre-Hilbert space, 5
Primal problem, 179
Principle of uniform boundedness, 4, 29
Product space, 25
Projection, 25
Projection mapping, 208
Proper convex function, 68
(Proper) Lagrange multiplier, 160
Proper saddle function, 129
Proximinal set, 213
Pseudoconvex, 165
Pseudomonotone, 108

Q
Quasi-concave–convex function, 138
Quasi-convex function, 68, 121
Quasi-subdifferential, 123

R
Radial boundary, 9
Radius, 221
Recession function, 187
Reflexive linear normed space, 27, 32
Regular subdifferentiable mapping, 162
Relative interior, 8
Remotal set, 219
Renorming theorem, 36
Riemann–Stieltjes integral, 45
Riemann–Stieltjes sum, 45
Riesz representation theorem, 5

S
Saddle function, 127
Saddle point, 126
Saddle value, 126
Segment, 7
Self-adjoint operator, 6
Semigroup of class C0, 59
Seminorm, 2
Separated dual system, 24
Separated space, 2
Signorini problem, 112
Singular part, 46, 47, 244
Slater condition, 158, 162
Slater’s constraint qualification, 156
Smooth space, 34
Stable problem, 176
Standard form, 204
Star-shaped, 165
State, 197, 234
State system, 234
(Strictly) concave function, 68
Strictly convex function, 13, 67
Strictly convex space, 35
Strictly separated sets, 16
Strong convergence, 27
Strong solution, 59
Strong topology, 27
Strongly consistent problem, 182
Strongly separated, 18
Subdifferentiable, 83
Subdifferential, 82, 130
Subgradients, 82
Sublinear functional, 9
Support functional, 76, 220
Support point, 16
Supporting hyperplane, 16
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T
Tangent cone, 172
Tangent hyperplane, 34
Tangentially regular point, 172
Toland duality theorem, 217
Topological linear space, 1
Tychonoff theorem, 26

U
Uniform convexifiability problem, 40
Uniformly bounded, 4
Uniformly convex, 37
Uniformly smooth, 38
Upper derivative, 124
Upper-semicontinuity, 70
Upper-semicontinuous function, 69

V
Value function, 174
Valued distribution, 45

Variational inequality, 107
Variational solution, 314

W
Weak topology, 24, 27
Weak (weak-star) convergence, 27
Weak-star topology, 27
Weakly differentiable, 86
Weierstrass theorem, 71
Well posed problem, 58

X
X-topology of Y , 24

Y
Y -topology of X, 24
Young inequality, 76

Z
Zorn lemma, 15
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